ENGINEERING MATHEMATICS - II

UNIT-I

MATRICES

SYLLABUS

- Characteristic equation
- Eigen values and eigen vectors of a real matrix
- Properties
- Cayley-Hamilton theorem
- Orthogonal transformation of a symmetric matrix to diagonal form
- Quadratic form
- *Reduction of quadratic form to canonical form by orthogonal transformation.

APPLICATIONS

- In physics related applications, matrices are applied in the study of electrical circuits, quantum mechanics and optics.
- In the calculation of battery power outputs, resistor conversion of electrical energy into another useful energy, these matrices play a major role in calculations.
- * Especially in solving the problems using Kirchhoff's laws of voltage and current, the matrices are essential.
- ❖ In computer based applications, matrices play a vital role in the projection of three dimensional image into a two dimensional screen, creating the realistic seeming motions.

APPLICATIONS

- ❖ Stochastic matrices and Eigen vector solvers are used in the page rank algorithms which are used in the ranking of web pages in Google search.
- ❖ The matrix calculus is used in the generalization of analytical notions like exponentials and derivatives to their higher dimensions.
- ❖ One of the most important usages of matrices in computer side applications are encryption of message codes.
- * Matrices and their inverse matrices are used for a programmer for coding or encrypting a message.

DEFINITION

Matrix:

A system of equation arranged in a rectangular form along m-rows and n-columns bounded by the brackets

[] or ()

• Square matrix

In a matrix, number of rows is equal to number of columns (i.e) n=m is called as square matrix.

Row matrix

A matrix having a single row is called a row matrix. (i.e) (1xn)

Column matrix

A matrix having a single column is called a column matrix. (i.e) (mx1).

Diagonal matrix

In a square matrix, all the elements except the main diagonal are zeros is called a diagonal matrix.

• Unit matrix (or) Identity matrix

A diagonal matrix of order n which has unity for all its diagonal elements. It is denoted by I.

• Upper triangular matrix

A square matrix in which all the elements below the main diagonal elements are zeros.

• Lower triangular matrix

A square matrix in which all the elements above the main diagonal elements are zeros.

• Transpose of a matrix

A matrix got from any matrix A, by interchanging its rows and columns is called the transpose of the matrix and denoted by A^T

• Symmetric matrix

A square matrix $A = (a_{ij})$ is said to be symmetric when $a_{ij} = a_{ji}$ for all i & j. (i.e) $A = A^T$

• Skew Symmetric matrix

A square matrix $A = (a_{ij})$ is said to be Skew symmetric when $a_{ij} = -a_{ji}$ for all i & j. (i.e) $A = -A^T$

• Singular matrix

A square matrix A is said to be singular if the determinant value of A is zero.

(i.e)
$$|A| = 0$$

CHARACTERISTIC EQUATION

The equation $|A - \lambda I| = 0$ is called the characteristic equation of the matrix A.

The determinant $|A - \lambda I| = 0$ when expanded will give a polynomial, which we call as characteristic polynomial of matrix A.

WORKING RULE TO FIND CHARACTERISTIC EQUATION

• Let A be any square matrix of order n. The characteristic equation of A is

$$|A - \lambda I| = 0$$

• For 2 × 2 matrix, the Characteristic Equation is

$$\lambda^2 - S_1 \lambda + S_2 = 0$$

where

 S_1 = sum of the main diagonal elements.

$$S_2 = |A|$$

• For 3×3 matrix

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

 S_1 = sum of the main diagonal elements.

 S_2 = sum of the minors of main diagonal elements

$$S_3 = |A|$$

PROBLEM 1

• Find the Characteristic Equation of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$.

Solution:

The C.E of A is
$$\begin{vmatrix} A - \lambda I \end{vmatrix} = 0$$

$$\begin{vmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \end{vmatrix} = 0$$

$$\begin{vmatrix} \begin{pmatrix} 1 - \lambda & 2 \\ 0 & 2 - \lambda \end{pmatrix} \end{vmatrix} = 0$$

$$(1 - \lambda)(2 - \lambda) - 0 = 0$$

$$\lambda^2 - 3\lambda + 2 = 0 \text{ is the required}$$

characteristic equation.

PROBLEM 2

• Find the Characteristic Equation of the matrix $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^2 - S_1 \lambda + S_2 = 0 \text{ where}$$

$$S_1 = 1 + 3$$

$$S_2 = |A| = \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} = -5$$
Hence the C.E is $\lambda^2 - 4\lambda - 5 = 0$

• Find the C.E of the matrix
$$\begin{bmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{bmatrix}$$
.

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = 2 + 1 - 4 = -1$$

 S_2 = Sum of the minors of the main diagonal elements

$$= \begin{vmatrix} 1 & 3 \\ 2 & -4 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ -5 & -4 \end{vmatrix} + \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix}$$

$$S_2 = -2$$

$$S_3 = |A| = \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{vmatrix} = 0$$

Hence the C.E is $\lambda^3 + \lambda^2 - 2\lambda = 0$

PRACTICE PROBLEMS

- Find the C.E of the matrix $\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$.
- Find the C.E of the matrix $\begin{bmatrix} -2 & 2 \\ 2 & 1 \end{bmatrix}$.
- Find the C.E of the matrix $\begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$.
- Find the C.E of the matrix $\begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & 2 & -1 \\ 2 & 1 & 0 \\ 4 & -1 & 6 \end{bmatrix}$

EIGEN VALUES

• Let $A = [a_{ij}]$ be a square matrix. The characteristic equation of A is $|A - \lambda I| = 0$.

• The roots of the characteristic equation are called Eigen values of A.

EIGEN VECTORS

Let $A = [a_{ij}]$ be a square matrix. If there exists a non zero vector

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 such that $AX = \lambda X$, then the

vector X is called an Eigen vector of A corresponding to the Eigen value λ .

WORKING RULE TO FIND EIGENVALUES AND EIGENVECTORS

• Find the characteristic equation $|A - \lambda I| = 0$

Solving the C.E we get characteristic roots.
 They are called Eigenvalues.

• To find Eigenvectors solve $(A - \lambda I)X = 0$ for the different values of λ .

PROBLEMS ON NON-SYMMETRIC MATRICES WITH NON-REPEATED EIGEN VALUES PROBLEM 1

Find the Eigenvalues and Eigenvectors of the matrix $\begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$.

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

 $\Rightarrow \lambda^2 - S_1 \lambda + S_2 = 0$ where
 $S_1 = 1 - 1 = 0$
 $S_2 = |A| = \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} = -4$

Hence the C.E is $\lambda^2 - 4 = 0$.

To solve the C.E $\lambda^2 = 4 \Rightarrow \lambda = \pm 2$.

Hence the Eigenvalues are -2,2

To find the Eigenvectors $(A - \lambda I)X = 0$

$$\begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} 1 - \lambda & 1 \\ 3 & -1 - \lambda \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow (A)$$

Case I:

If λ =-2 then equation (A) becomes

$$\begin{bmatrix} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$3x_1 + x_2 = 0.$$
$$3x_1 + x_2 = 0.$$

i.e.,
$$3x_1 + x_2 = 0$$

 $3x_1 = -x_2$
 $\frac{x_1}{1} = \frac{x_2}{-3}$. Hence $X_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

Case 2:

If $\lambda=2$ then equation (A) becomes

$$\begin{bmatrix} \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-x_1 + x_2 = 0.$$

$$3x_1 - 3x_2 = 0$$
.

$$\Rightarrow x_1 - x_2 = 0.$$

$$x_1 = x_2$$

$$\frac{x_1}{1} = \frac{x_2}{1}.$$

Hence
$$X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

PROBLEM 2

Find the Eigenvalues and Eigenvectors of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = 1 + 2 + 3 = 6$$

 $S_2 =$ Sum of the minors of the main diagonal elements

$$= \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix}$$

$$S_2 = 11$$

$$|S_3| = |A| = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{vmatrix} = 6$$

Hence the C.E is $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$

If
$$\lambda = 1$$
, then $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$.

$$\lambda = 1$$
 is a root.

By synthetic division,

Other roots are given by $\lambda^2 - 5\lambda + 6 = 0$

$$(\lambda-3)(\lambda-2)=0 \Rightarrow \lambda = 2,3$$

Hence the Eigen values are $\lambda = 1,2,3$.

To find the Eigen vectors, solve $(A - \lambda I)X = 0$

$$\begin{bmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (A)$$

Case (i).

If $\lambda = 1$ then equation (A) becomes

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_3 = 0$$
 \rightarrow (1)
 $x_1 + x_2 + x_3 = 0$ \rightarrow (2)
 $2x_1 + 2x_2 + 2x_3 = 0$ \rightarrow (3)

Since (2) and (3) are same, solving (1) and (2) by rule of cross multiplication

$$\frac{x_1}{1} = \frac{x_2}{-1} = \frac{x_3}{0}$$

Hence a corresponding Eigen vector is $X_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

Case (ii): If $\lambda = 2$ then equation (A) becomes

$$\begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-x_1 - x_3 = 0$$
 \rightarrow (4)
 $x_1 + x_3 = 0$ \rightarrow (5)
 $2x_1 + 2x_2 + 2x_3 = 0$ \rightarrow (6)

Since (4) and (5) are same, solving (5) and (6) by rule of cross multiplication

$$\frac{x_1}{-2} = \frac{x_2}{1} = \frac{x_3}{2} \implies \frac{x_1}{2} = \frac{x_2}{-1} = \frac{x_3}{-2}$$

Hence a corresponding Eigen vector is $X_2 = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$

Case (ii). If $\lambda = 3$ then equation (A) becomes

$$\begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2x_1 + 0x_2 - x_3 = 0 \to (7)$$

$$x_1 - x_2 + x_3 = 0 \to (8)$$

$$2x_1 + 2x_2 + 0x_3 = 0 \to (9)$$

solving (8) and (9) by rule of cross multiplication

$$\frac{x_1}{-2} = \frac{x_2}{2} = \frac{x_3}{4} \implies \frac{x_1}{1} = \frac{x_2}{-1} = \frac{x_3}{-2}$$

Hence a corresponding Eigen vector is $X_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$

PROBLEMS ON NON-SYMMETRIC MATRICES WITH REPEATED EIGEN VALUES PROBLEM 1

Find all the Eigenvalues & Eigenvectors of the matrix

$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = -2 + 1 + 0 = -1$$

 $S_2 = Sum$ of the minors of the main

diagonal elements

$$= \begin{vmatrix} 1 & -6 \\ -2 & 0 \end{vmatrix} + \begin{vmatrix} -2 & -3 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix} = -21$$

$$S_2 = -21$$

$$S_2 = -21$$

$$S_3 = |A| = \begin{vmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{vmatrix} = 45$$

Continued... Hence the C.E is $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$ If $\lambda = -3$, then $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$.

 $\lambda = -3$ is a root.

By synthetic division,

Other roots are given by $\lambda^2 - 2\lambda - 15 = 0$ $(\lambda-5)(\lambda+3)=0 \Rightarrow \lambda=2,3$

Hence the Eigen values are $\lambda = -3, -3, 5$.

To find the Eigen vectors, solve $(A - \lambda I)X = 0$

$$\begin{bmatrix} \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (A)$$

Case (i)

If $\lambda = -3$ then equation (A) becomes $\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + 2x_2 - 3x_3 = 0 \rightarrow (1)$$

 $2x_1 + 4x_2 - 6x_3 = 0 \rightarrow (2)$
 $-x_1 - 2x_2 + 3x_3 = 0 \rightarrow (3)$

Since (1),(2) and (3) are same, $x_1 + 2x_2 - 3x_3 = 0$

Put
$$x_1 = 0$$
, $2x_2 = 3x_3 \Rightarrow \frac{x_2}{3} = \frac{x_3}{2}$

Hence the corresponding Eigen vector is $X_1 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$

Put
$$x_2 = 0$$
, $x_1 - 3x_2 = 0$
 $x_1 = 3x_2 \Rightarrow \frac{x_1}{3} = \frac{x_3}{1}$

Hence the corresponding Eigen vector is $X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Case (ii). If $\lambda = 5$ then equation (A) becomes

$$\begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-7x_1 + 2x_2 - 3x_3 = 0 \rightarrow (4)$$

$$2x_1 - 4x_2 - 6x_3 = 0 \rightarrow (5)$$

$$-x_1 - 2x_2 - 5x_3 = 0 \rightarrow (6)$$

solving (4) and (5) by rule of cross multiplication

$$\frac{x_1}{-24} = \frac{x_2}{-48} = \frac{x_3}{24} \implies \frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{-1}$$

Hence a corresponding Eigen vector is
$$X_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

PROBLEM 2

Find all the Eigenvalues & Eigenvectors of the matrix

$$\begin{pmatrix}
6 & -6 & 5 \\
14 & -13 & 10 \\
7 & -6 & 4
\end{pmatrix}$$

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = \text{Sum of the main diagonal elements}$$

= $6 + (-13) + 4$
= -3

 $S_2 = \text{Sum of the minors of the main diagonal elements}$

$$= \begin{vmatrix} -13 & 10 \\ -6 & 4 \end{vmatrix} + \begin{vmatrix} 6 & 5 \\ 7 & 4 \end{vmatrix} + \begin{vmatrix} 6 & -6 \\ 14 & -13 \end{vmatrix}$$

$$= (-52 + 60) + (24 - 35) + (-78 + 84)$$

$$= 8 + (-11) + 6$$

$$= 14 - 11$$

$$= 3$$

$$S_3 = |A|$$

$$= \begin{pmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{pmatrix}$$

$$= 6(-52 + 60) + 6(56 - 70) + (-84 + 91)$$

$$= 6(8) + 6(-14) + 5(7)$$

$$= 48 - 84 + 35$$

$$= -1$$

Therefore the Characteristic equation is

$$\lambda^3 + 3\lambda^2 + 3\lambda - 1 = 0$$

To solve the characteristic equation

$$\lambda^{3} + 3\lambda^{2} + 3\lambda - 1 = 0$$
If $\lambda = 1$ then $\lambda^{3} + 3\lambda^{2} + 3\lambda - 1 = 1 + 3 + 3 + 1 \neq 0$
If $\lambda = -1$ then $\lambda^{3} + 3\lambda^{2} + 3\lambda - 1 = -1 + 3 - 3 + 1 = 0$

 $\therefore \lambda = -1 \text{ is a root.}$

By synthetic division,

Other roots are given by

$$\lambda^{2} + 2\lambda + 1 = 0$$

$$(\lambda + 1)^{2} = 0$$

$$i.e., \lambda = -1 \text{ and } \lambda = -1$$

Hence the Eigen values are -1,-1,-1

To find the Eigen vectors, solve $(A - \lambda I)X = 0$

$$\begin{bmatrix}
(A - \lambda I)X = 0 \\
\begin{bmatrix}
(6 - 6 5) \\
14 - 13 10 \\
7 - 6 4
\end{bmatrix} - \lambda \begin{bmatrix}
1 0 0 \\
0 1 0 \\
0 0 1
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} 6-\lambda & -6 & 5\\ 14 & -13-\lambda & 10\\ 7 & -6 & 4-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \dots (A)$$

When $\lambda = -1$ we get

$$\begin{bmatrix} 7 & -6 & 5 \\ 14 & -12 & 10 \\ 7 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$7x_1 - 6x_2 + 5x_3 = 0...(1)$$

$$14x_1 - 12x_2 + 10x_3 = 0 - (B)$$

$$7x_1 - 6x_2 + 5x_3 = 0....(3)$$

Here (1), (2) and (3) are same equations

i.e.,
$$7x_1 - 6x_2 + 5x_3 = 0$$

 $Put x_1 = 0 in (B), we get$

$$-6x_2 + 5x_3 = 0$$

i.e.,
$$6x_2 = 5x_3$$

$$\frac{x_2}{5} = \frac{x_3}{6}$$

Hence the corresponding Eigen vector is $X_1 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

$$Put x_2 = 0 in (B), we get$$

$$7x_1 + 5x_3 = 0$$

i.e.,
$$7x_1 = -5x_3$$

$$\frac{x_1}{-5} = \frac{x_3}{7}$$

Hence the corresponding Eigen vector is $X_2 = \begin{bmatrix} -5 \\ 0 \\ 7 \end{bmatrix}$

 $Put x_3 = 0 in (B), we get$

$$7x_1 - 6x_2 = 0$$
 i.e., $7x_1 = 6x_2$

$$\frac{x_1}{6} = \frac{x_2}{7}$$

Hence the corresponding Eigen vector is
$$X_3 = \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}$$

The Eigen values are -1,-1,-1

The Eigenvectors are
$$X_1 = \begin{bmatrix} 0 \\ 5 \\ 6 \end{bmatrix}, X_2 = \begin{bmatrix} -5 \\ 0 \\ 7 \end{bmatrix}$$
 and $X_3 = \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}$

PROBLEMS ON SYMMETRIC MATRICES WITH NON REPEATED EIGEN VALUES PROBLEM 1

Find the Eigenvalues & Eigenvectors of the matrix $\begin{bmatrix} 7 & 2 & 6 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$

$$\begin{vmatrix}
7 & -2 & 0 \\
-2 & 6 & -2 \\
0 & -2 & 5
\end{vmatrix}$$

Solution:

The C.E of A is $|A - \lambda I| = 0$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

 $S_1 = \text{Sum of the main diagonal elements}$

$$=7+6+5=18$$

 $S_2 = \text{Sum of the minors of the}$

main diagonal elements

$$= \begin{vmatrix} 6 & -2 \\ -2 & 5 \end{vmatrix} + \begin{vmatrix} 7 & 0 \\ 0 & 5 \end{vmatrix} + \begin{vmatrix} 7 & -2 \\ -2 & 6 \end{vmatrix} = (30-4) + (35-0) + (42-4)$$
$$= 26 + 35 + 38 = 99$$

$$S_{3} = |A| = \begin{vmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{vmatrix}$$
$$= 7(30-4) + 2(-10-0) + 0$$
$$= 162$$

:. The characteric eqation is

$$\lambda^3 - 18\lambda^2 + 99\lambda - 162 = 0$$

To solve the characteristic equation

If
$$\lambda = 1$$
 then $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 \neq 0$
If $\lambda = -1$ then $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 \neq 0$
If $\lambda = 2$ then $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 \neq 0$
If $\lambda = -2$ then $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 \neq 0$
If $\lambda = 3$ then $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 \neq 0$
 $\therefore \lambda = 3$ is a root of $\lambda^{3} - 18\lambda^{2} + 99\lambda - 162$
By synthetic division
$$3\begin{vmatrix} 1 & -18 & 99 & -162 \\ 0 & 3 & -45 & 162 \end{vmatrix}$$

-15 54 0

$$\lambda^{3} - 18\lambda^{2} + 99\lambda - 162 = 0$$
i.e) $(\lambda - 3)(\lambda^{2} - 15\lambda + 54) = 0$
 $(\lambda - 3)(\lambda - 9)(\lambda - 6) = 0$
 $\lambda = 3,6,9$

Hencethe Eigenvalues of the matrix is 3,6,9

To find the Eigen vectors, solve $(A - \lambda I)X = 0$

$$\begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 7-\lambda & -2 & 0 \\ -2 & 6-\lambda & -2 \\ 0 & -2 & 5-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \dots (A)$$

Case(1).If $\lambda = 3$ then the equation(A) becomes

$$\begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$4x_1 - 2x_2 + 0x_3 = 0 \qquad (1)$$

$$-2x_1 + 3x_2 - 2x_3 = 0 \qquad (2)$$

$$0x_1 - 2x_2 + 2x_3 = 0 \qquad (3)$$

Solving(2) and (3) we get

$$\frac{x_1}{6-4} = \frac{-x_2}{-4-0} = \frac{x_3}{4-0}$$

$$\frac{x_1}{2} = \frac{-x_2}{4} = \frac{x_3}{4}$$

$$\frac{x_1}{1} = \frac{-x_2}{2} = \frac{x_3}{2}$$

Hence a corresponding Eigen vector is
$$X_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

Case (2). If $\lambda = 6$ then the equation (A) becomes

$$\begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - 2x_2 + 0x_3 = 0 (4)$$

$$-2x_1 + 0x_2 - 2x_3 = 0 (5)$$

$$0x_1 - 2x_2 - x_3 = 0 (6)$$

Solving (5) and (6) we get

$$\frac{x_1}{0-4} = \frac{-x_2}{2-0} = \frac{x_3}{4-0}$$

$$\frac{x_1}{-4} = \frac{x_2}{-2} = \frac{x_3}{4}$$

$$X_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$

Hence the corresponding Eigenvector is

$$X_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

Case (3). If $\lambda = 9$ then the equation (A) becomes

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & -3 & -2 \\ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2x_1 - 2x_2 + 0x_3 = 0 (7)$$

$$-2x_1 - 3x_2 - 2x_3 = 0 (8)$$

$$0x_1 - 2x_2 - 4x_3 = 0 (9)$$

solving (8) and (9) we get

i.e.,
$$\frac{x_1}{12-4} = \frac{-x_2}{8-0} = \frac{x_3}{4-0}$$

i.e., $\frac{x_1}{8} = \frac{x_2}{-8} = \frac{x_3}{4}$

i.e.,
$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

Hence the corresponding Eigen vector is $X_3 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$

PROBLEMS ON SYMMETRIC MATRICES WITH REPEATED EIGEN VALUES PROBLEM 1

Find the Eigenvalues & Eigenvectors of the matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Solution:

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

where

$$S_1 = 0 + 0 + 0 = 0$$

$$S_2 = \text{Sum of the minors of the main}$$

$$\text{diagonal elements}$$

$$= \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -3$$

$$S_1 = 0 + 0 + 0 = 0$$

$$S_2 = S_1 = 0$$

$$S_2 = -3$$

$$S_3 = |A| = \begin{vmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{vmatrix} = 2$$

Hence the C.E is $\lambda^3 - 3\lambda - 2 = 0$

If
$$\lambda = -1$$
, then $\lambda^2 - 3\lambda - 2 = 0$.

$$\lambda = -1$$
 is a root.

By synthetic division,

Other roots are given by $\lambda^2 - \lambda - 2 = 0$

$$(\lambda + 1)(\lambda - 2) = 0 \Rightarrow \lambda = -1,2$$

Hence the Eigen values are $\lambda = -1, -1, 2$.

To find the Eigen vectors, solve $(A - \lambda I)X = 0$

$$\begin{bmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (A)$$

Case (i).

If
$$\lambda = 2$$
 then equation (A) becomes

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2x_1 + x_2 + x_3 = 0 \quad \rightarrow (1)$$

$$x_1 - 2x_2 + x_3 = 0 \quad \rightarrow (2)$$

$$x_1 + x_2 - 2x_3 = 0 \quad \rightarrow (3)$$

solving (1) and (2) by rule of cross multiplication

$$\frac{x_1}{3} = \frac{x_2}{3} = \frac{x_3}{3} \implies \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{1}$$

Hence a corresponding Eigen vector is
$$X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Case (ii):

If $\lambda = -1$ then equation (A) becomes

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + x_2 + x_3 = 0 \rightarrow (4)$$

 $x_1 + x_2 + x_3 = 0 \rightarrow (5)$
 $x_1 + x_2 + x_3 = 0 \rightarrow (6)$

Put
$$x_1 = 0$$
, $x_2 = -x_3 \Rightarrow \frac{x_2}{1} = \frac{x_3}{-1}$

Hence the corresponding Eigen vector is $X_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

Let
$$X_3 = \begin{bmatrix} l \\ m \\ n \end{bmatrix}$$
 as X_3 is orthogonal to $X_1 \& X_2$. Since the given

matrix is symmetric.

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix} = 0 \Rightarrow l + m + n = 0 \rightarrow (7)$$
$$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} l \\ m \\ n \end{bmatrix} = 0 \Rightarrow 0l + m - n = 0 \rightarrow (8)$$

solving (7) and (8) by rule of cross multiplication

Hence the corresponding Eigen vector is

$$X_3 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$$

• PROPERTY: I

- (i) The sum of the Eigen values of a matrix is the sum of the elements of the main diagonal.
 - (or) The sum of the Eigen values of a matrix is equal to the trace of the matrix.
- (ii) Product of the eigen values of a matrix is equal to the determinant of the matrix.

PROPERTY: 2

A square matrix A and its transpose A^T have the same Eigen values.

• PROPERTY: 3

If λ is an eigen value of a matrix A, then $\frac{1}{\lambda}(\lambda \neq 0)$ is the eigen value of A⁻¹

• PROPERTY: 4

If λ is an eigen value of an orthogonal matrix A, then

 $\frac{1}{\lambda}(\lambda \neq 0)$ is also its eigen value

• PROPERTY: 5

If λ_1 , λ_2 , λ_3 are the eigen values of A then

 $K\lambda_1, K\lambda_2, K\lambda_3$ are the eigen values of KA.

PROPERTY: 6

If λ_1 , λ_2 , λ_3 are the eigen values of A then

 $\lambda_1^p, \lambda_2^p, \lambda_3^p$ are the eigen values of A^p

• PROPERTY: 7

If λ_1 , λ_2 , λ_3 are the eigen values of A then

 $\frac{|A|}{\lambda_1}, \frac{|A|}{\lambda_2}, \frac{|A|}{\lambda_3}$ are the eigen values of adj A.

• PROPERTY: 8

If λ_1 , λ_2 , λ_3 are the eigen values of A then

 $\lambda_1 - K, \lambda_2 - K, \lambda_3 - K$ are the eigen values of (A-KI).

• PROPERTY: 9

- (i) If A is a triangular matrix then the eigen values are its diagonal elements.
- (ii) If A is a singular matrix (i.e. |A| = 0) then one of the eigen values is 0.

• PROPERTY: 10

- (i) If A is an orthogonal matrix then $AA^T = A^TA = I$.
- (ii) If A is symmetric matrix then $A = A^{T}$

PROBLEMS ON PROPERTIES OF EIGEN VALUES

1. The product of two Eigen values of the matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 is 16. Find the third Eigenvalue.

Solution:

Let the Eigenvalues of the matrix A be $\lambda_1, \lambda_2, \lambda_3$.

Given
$$\lambda_1 \lambda_2 = 16$$

We know that
$$\lambda_1 \lambda_2 \lambda_3 = |A|$$

[Product of the Eigenvalues is equal to the determinant of the matrix]

$$\lambda_{1} \lambda_{2} \lambda_{3} = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix}$$

$$= 6(9-1) + 2(-6+2) + 2(2-6)$$

$$= 6(8) + 2(-4) + 2(-4)$$

$$= 48 - 8 - 8$$

$$= 32$$

$$\lambda_1 \lambda_2 \lambda_3 = 32$$

$$16\lambda_3 = 32$$

$$\lambda_3 = \frac{32}{16} = 2$$

PROBLEM 2

2. Find the Eigen values
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 without

using the characteristic equation idea.

Solution:

Given:
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 clearly given matrix is an

upper triangular matrix. Then by property, the characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

Hence the Eigenvalues are 2, 2, 2.

PROBLEM 3

3. Two of the Eigen values of A =
$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
 are 3

and 6. Find the Eigenvalue A^{-1} .

Solution:

sum of the Eigenvalues

= sum of the main diagonal elements

$$=3+5+3$$

$$= 11$$

Let k be the third Eigenvalue

$$\therefore 3+6+k=11$$
$$9+k=11$$
$$k=2$$

Rule: If Eigenvalues of A are $\lambda_1, \lambda_2, \lambda_3$.

then the Eigenvalues of A⁻¹ are $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$, $\frac{1}{\lambda_3}$.

∴ The Eigenvalues of A⁻¹ are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$.

PROBLEM 4

If -1 is an eigen value of the matrix
$$A = \begin{pmatrix} 1 & -2 \\ -3 & 2 \end{pmatrix}$$
, find the eigen values of A^4

using properties. (N/D 2010)

Solution:

The sum of eigen values is equal to sum of the main diagonal elements

$$\lambda_1 + \lambda_2 = 1 + 2$$

$$-1 + \lambda_2 = 3$$

$$\lambda_{2} = 3 + 1$$

$$\lambda_2 = 4$$

The eigen values of A⁴ are (-1)⁴ and 4⁴ that is 1, 256

PROBLEM 5

Given:
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{pmatrix}$$
. Find the eigen values of A^2 . (Jan 2010)

Solution:

The given matrix is the lower triangle matrix

The eigen values of A are -1,-3,2

The eigen values of A2 are

that is 1, 9, 4

[by property]

PROBLEM 6

$$\mathbf{If} \qquad \mathbf{A} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{vmatrix}$$

If $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}$ then find the eigen values of A⁻¹ and A²-2I.

Solution:

In a triangular matrix, the main diagonal values are the eigen values of the matrix.

- \therefore 2, 3, 4 are the eigen values of A.
- \therefore Hence the eigen values of A⁻¹ are 1/2, 1/3, 1/4

The eigen values of A^2 are $(2)^2$, $(3)^2$, $(4)^2 = 4$, 9, 16.

The eigen values of A^2 -21 are 4-2, 9-2, 16-2=2, 7, 14

CAYLEY-HAMILTON THEOREM

Every square matrix A satisfies its own characteristic equation $|A-\lambda I| = 0$, so that if

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0} = 0$$

then

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I = 0$$

Uses:

- (i) to calculate positive integral powers
- (ii) to calculate the inverse of a square matrix.

PROBLEM 1

Verify the Cayley Hamilton Theorem for a matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and find its inverse

Solution:

Given A =
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Characteristics equation is $|\mathbf{A} - \lambda \mathbf{I}| = 0$

$$(ie) \lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$$

To verify Cayley Hamilton Theorem we want to prove

$$A^3 - 6A^2 + 9A - 4I = 0$$

$$Now A^{2} = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$$

$$A^3 - 6A^2 + 9A - 4I = 0$$

:. Cayley Hamilton Theorem is verified

To find A^{-1} :

$$A^3 - 6A^2 + 9A - 4I = 0$$

(multiply by
$$A^{-1}$$
) $A^{-1} = \frac{1}{4} [A^2 - 6A + 9I]$

$$= \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

PROBLEM 2

Use Cayley Hamilton Theorem find A⁴ for a matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

Solution:

Let
$$A = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

The Characteristics equation is $|\mathbf{A} - \lambda \mathbf{I}| = 0$

$$(ie) \lambda^3 - 4\lambda^2 + 4\lambda + 1 = 0$$

By the Characteristics equation we have

$$A^3 - 4A^2 + 4A + I = 0$$

multiply by A

(ie)
$$A^4 - 4A^3 + 4A^2 + A = 0$$

$$A^4 = 4A^3 - 4A^2 - A....(1)$$

Now
$$A^2 = \begin{bmatrix} 5 & -3 & 1 \\ 2 & 1 & 4 \\ 3 & -1 & 2 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 11 & -8 & 0 \\ 8 & -1 & 8 \\ 8 & -4 & 3 \end{bmatrix}$$

Using A³ and A² in (1) we have
$$A^4 = \begin{bmatrix} 22 & -19 & -5 \\ 24 & -9 & 14 \\ 19 & -12 & 3 \end{bmatrix}$$

PROBLEM 3

Using Cayley-Hamilton theorem, evaluate the matrix polynomial

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$
for A= $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

Solution:

The characteristics equation is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$.

 S_1 = Sum of the main diagonal elements = 5;

 S_2 = Sum of the minors of the main diagonal elements = 7;

$$S_3 = |A| = 3$$

The Characteristic equation is $\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$ By Cayley-Hamilton theorem , $A^3 - 5A^2 + 7A - 3I = 0$ -----(1) Let $P(A) = A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$

$$D(A) = A^3 - 5A^2 + 7A - 3I$$

Take $Q(A) = A^5 + A$, $R(A) = A^2 + A + I$.

We know that, P(A) = Q(A)D(A)+R(A)

But,
$$A^2 = \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{pmatrix}$$

$$\therefore \mathbf{P}(\mathbf{A}) = \mathbf{A}^2 + \mathbf{A} + \mathbf{I} = \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$$

DIAGONALISATION SIMILAR AND DIAGONALIZABLE

Two $n \times n$ matrices A and B are said to be **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$

This is called the similarity transformation

A matrix is diagonalizable if it is similar to a diagonal matrix

ORTHOGONAL TRANSFROMATION OF A SYMMETRIC MATRIX TO DIAGONAL FORM

Let A be any square matrix of order n

Step 1: to find the characteristic equation

Step 2: to solve the characteristic equation

Step 3: to find the eigen vectors

Step 4: form the Model matrix M whose columns are the eigenvectors of A

Step 5: find N^T

Step 6: calculate AN

Step 7: calculate $D = N^T A N$

ORTHOGONAL TRANSFROMATION OF A SYMMETRIC MATRIX TO DIAGONAL FORM-PROBLEMS

Diagonalise the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 and hence A^4 .

Solution:

$$Let \ A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Step 1: To find the Characteristic equation

The Characteristic equation of A is $|A - \lambda I| = 0$

i.e.,
$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda + S_3 = 0$$
 where

 $S_1 = \text{Sum of the main diagonal elements} = 8 + 7 + 3 = 18$

 $S_2 = \text{Sum of the minors of the main diagonal elements}$

$$= \begin{vmatrix} 7 & -4 \\ -4 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix}$$
$$= (21-16) + (24-4) + (56-36) = 5 + 20 + 20 = 45$$

$$S_3 = |A| = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$$

$$=8(21-16)+6(-18+8)+2(24-14)$$

$$= 8(5) + 6(-10) + 2(10)$$

$$=40-60+20=0$$

 \therefore the characteristic equation is $\lambda^3 - 18\lambda^2 + 45\lambda = 0$

Step 2: To find the roots of the charecteristic eqn

$$\lambda^{3} - 18\lambda^{2} + 45\lambda = 0$$
$$\lambda(\lambda^{2} - 18\lambda + 45) = 0$$
$$\lambda(\lambda - 15)(\lambda - 3) = 0$$
$$\lambda = 0, \lambda = 3, \lambda = 15$$

Hence the Eigen values of the matrix is 0, 3, 15

Step 3: To find the Eigen vectors:

To find the Eigen vectors solve $(A - \lambda I)X = 0$

$$\begin{pmatrix}
8 - \lambda & -6 & 2 \\
-6 & 7 - \lambda & -4 \\
2 & -4 & 3 - \lambda
\end{pmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

Case (1). If $\lambda = 0$ then

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$8x_1 - 6x_2 + 2x_3 = 0 (1)$$

$$-6x_1 + 7x_2 - 4x_3 = 0 (2)$$

$$2x_1 - 4x_2 + 3x_3 = 0 (3)$$

Solving(1) and (2) we get

$$\frac{x_1}{24 - 14} = \frac{x_2}{-12 + 32} = \frac{x_3}{56 - 36}$$

$$\frac{x_1}{10} = \frac{x_2}{20} = \frac{x_3}{20}$$

$$\frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{2}$$

Hence the corresponding Eigen vector is $X_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

Case (2). If $\lambda = 3$ then

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$5x_1 - 6x_2 + 2x_3 = 0 (4)$$

$$-6x_1 + 4x_2 - 4x_3 = 0 (5)$$

$$2x_1 - 4x_2 + 0x_3 = 0 (6)$$

Solving(5) and (6) we get

$$\frac{x_1}{0-16} = \frac{x_2}{-8-0} = \frac{x_3}{24-8}$$

$$\frac{x_1}{-16} = \frac{x_2}{-8} = \frac{x_3}{16}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$

Hence the corresponding Eigenvector is $X_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$

Solving(5) and (6) we get

$$\frac{x_1}{0-16} = \frac{x_2}{-8-0} = \frac{x_3}{24-8}$$

$$\frac{x_1}{-16} = \frac{x_2}{-8} = \frac{x_3}{16}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$

Hence the corresponding Eigenvector is $X_2 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$

Case (3).

If
$$\lambda = 3$$
 then

$$\begin{bmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-7x_1 - 6x_2 + 2x_3 = 0 (7)$$

$$-6x_1 - 8x_2 - 4x_3 = 0 (8)$$

$$2x_1 - 4x_2 - 12x_3 = 0 (9)$$

solving(8) and (9) we get

i.e.,
$$\frac{x_1}{96-16} = \frac{x_2}{-8-72} = \frac{x_3}{24+16}$$

i.e.,
$$\frac{x_1}{80} = \frac{x_2}{-80} = \frac{x_3}{40}$$

i.e.,
$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

Hence the corresponding Eigenvector is $X_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$

solving(8) and (9) we get

i.e.,
$$\frac{x_1}{96-16} = \frac{x_2}{-8-72} = \frac{x_3}{24+16}$$

i.e.,
$$\frac{x_1}{80} = \frac{x_2}{-80} = \frac{x_3}{40}$$

i.e.,
$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

Hence the corresponding Eigenvector is $X_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$

... The set of Eigen vectors are,

$$X_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \ X_{2} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \ X_{3} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

$$X_1^T X_2 = 2 + 2 - 4 = 0$$

 $X_1^T X_3 = 2 - 4 + 2 = 0$
 $X_2^T X_1 = 4 - 2 - 2 = 0$

Hence the Eigen vectors are orthogonal to each other.

Step 4: To form normalised matrix N.

$$\mathbf{N} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Step 5: Find N^{T} .

$$\mathbf{N}^{\mathrm{T}} = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Step 6: Calculate AN

$$AN = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 8-12+4 & 16-6-4 & 16+12+2 \\ -6+14-8 & -12+7+8 & -12-14-4 \\ 2-8+6 & 4-4-6 & 4+8+3 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 0 & 6 & 30 \\ 0 & 3 & -30 \\ 0 & -6 & 15 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 10 \\ 0 & 1 & -10 \\ 0 & -2 & 5 \end{bmatrix}$$

Step 7: Calculate N^TAN

$$\mathbf{N}^{\mathsf{T}}\mathbf{A}\mathbf{N} = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 10 \\ 0 & 1 & -10 \\ 0 & -2 & 5 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 0 & 2+2-4 & 10-20+10 \\ 0 & 4+1+4 & 20-10-10 \\ 0 & 4-2-2 & 20+20+5 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 45 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix}$$

i.e.,
$$D = \mathbf{N}^{\mathrm{T}} \mathbf{A} \mathbf{N} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix}$$

The diagonal elements are the Eigen values of A.

Step 8: To find A⁴

$$D = N^{T}AN$$

$$\Rightarrow A^4 = N D^4 N^T$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3^4 & 0 \\ 0 & 0 & 15^4 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 50625 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 0 & 162 & 101250 \\ 0 & 81 & -101250 \\ 0 & -162 & 50625 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 0 + 324 + 202500 & 0 + 162 - 202500 & 0 - 324 + 101250 \\ 0 + 162 - 202500 & 0 + 81 + 202500 & 0 - 162 - 101250 \\ 0 - 324 + 101250 & 0 - 162 - 101250 & 0 + 324 + 50625 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 202824 & -202338 & 100926 \\ -202338 & 202581 & -101412 \\ 100926 & -101412 & 50949 \end{bmatrix}$$
$$= \begin{bmatrix} 22536 & -22482 & 11214 \\ -22482 & 22509 & -11268 \\ 11214 & -11268 & 5661 \end{bmatrix}$$

PROBLEM 2

$$\begin{pmatrix}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{pmatrix}$$

Diagonalise the matrix $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ by means of an orthogonal transformation.

Solution:

The symmetric matrix
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

The characteristic equation is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$.

 $S_1 = Sum of the main diagonal elements = 9;$

 $S_2 = Sum of the minors of the main diagonal elements = 24;$

$$S_3 = |A| = 16$$

The characteristic equation is $\lambda^3 - 9\lambda^2 + 24\lambda - 16 = 0$.

$$\lambda = 1, 4, 4$$

Consider
$$\begin{pmatrix} 3-\lambda & 1 & 1 \\ 1 & 3-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$(3 - \lambda)x_1 + x_2 + x_3 = 0$$

$$1x_1 + (3 - \lambda)x_2 - 1x_3 = 0$$

$$1x_1 - 1x_2 + (3 - \lambda)x_3 = 0$$

$$----(1)$$

Case (1):
$$\lambda = 1$$

Substituting $\lambda=1$ in (1) we get

$$2x_1 + x_2 + x_3 = 0$$
$$1x_1 + 2x_2 - 1x_3 = 0$$
$$1x_1 - 1x_2 + 2x_3 = 0$$

Solving by cross multiplication we get

$$x_1 = -1, x_2 = 1, x_3 = 1.$$

The eigen vector is
$$\mathbf{X}_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

Case (2):
$$\lambda = 4$$

Substituting $\lambda=4$ in (1) we get

$$-1x_1 + 1x_2 + x_3 = 0$$

$$1x_1 - 1x_2 - 1x_3 = 0$$

$$1x_1 - 1x_2 - 1x_3 = 0$$

All the above equations are reduced to an equation

$$x_1 - x_2 - x_3 = 0$$

Assume
$$x_1 = 0$$
, $x_2 = 1 \Rightarrow x_3 = -1$

The eigen vector is
$$X_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Let the third eigen vector be
$$X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

 X_3 should be orthogonal with X_1 and X_2

$$X_{1}^{T}X_{3} = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies -a + b + c = 0$$

$$X_{2}^{T}X_{3} = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies b - c = 0$$
Solving the above equations, we get $X_{3} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

$$\mathbf{X}_{2}^{\mathsf{T}}\mathbf{X}_{3} = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \mathbf{0} \implies \mathbf{b} - \mathbf{c} = \mathbf{0}$$

The Normalised modal matrix is

$$\mathbf{N} = \begin{bmatrix} \frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$N^{T}AN =$$

$$\begin{bmatrix} \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix} \begin{bmatrix} \frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = D(1, 4, 4)$$

QUADRATIC FORM &CANONICAL FORM

Quadratic form: A homogeneous polynomial of second degree in any number of variables.

Matrix form of the Q.F: Every quadratic form can be expressed as X^TAX , where A is a symmetric

matrix with
$$a_{ii} = \text{coefficient of } x_i^2$$
 and $a_{ij} = \left(\frac{1}{2} \times \text{coefficient of } x_i x_j\right) = a_{ji}$

Canonical form = sum of squares of any number of variable.

Matrix form of the C.F: Every canonical form can be expressed as **Y^TDY**, where D is a diagonal matrix.

RANK, INDEX, SIGNATURE OF THE QUADRATIC FORMS

Rank (r) of the Quadratic form:

The number of non zero terms in the resulting canonical form is called rank of the Quadratic form

Index (p) of the Quadratic form:

The number of positive terms in the resulting canonical form is called index of the Quadratic form

Signature of the Quadratic form:

The Signature (s) of the Quadratic form = 2p-r

NATURE OF QUADRATIC FORMS

S.No.	Nature	If the eigen values are known	If the eigen values are not known
1	Positive definite	All the eigen values are positive	D_1,D_2,D_3 are positive
2	Negative definite	All the eigen values are negative	D ₁ , D ₃ are negative D ₂ is positive
3	Positive semi definite	All the eigen values are positive and atleast one is zero	$D_1 \! \geq \! 0 \; , D_2 \geq \! 0 \; D_3 \! \geq \! 0 \; \text{and}$ at least one is zero
4	Negative semi definite	All the eigen values are negative and atleast one is zero	$D_1 \! \leq \! 0 \ , D_3 \! \leq \! 0 \ , D_2 \! \geq \! 0$ and at least one is zero
5	Indefinite	eigen values are positive and negative	All the other cases

where
$$D_1 = |a_{11}| = a_{11}$$
 $D_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ $D_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

REDUCTION OF QUADRATIC FORM TO CANONICAL FORM BY ORTHOGONAL TRANSFORMATION

Let A be any square matrix of order n

- 1. Write the matrix of the given QF
- 2. To find the characteristic equation
- 3. To solve the characteristic equation
- 4. To find the eigen vectors orthogonal to each other
- 5. Form the Normalized Model matrix N
- 6. Find N^T
- 7. $D = N^T A N$
- 8. Canonical from [y1 y2 y3] [D] [y1 y2 y3]^T

Write down the quadratic form corresponding to the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$$

Solution:

The quadratic form of A is given by

$$X^{T}AX = (x_{1} \ x_{2} \ x_{3}) \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0x_{1}^{2} + x_{2}^{2} + 2x_{3}^{2} + 10x_{1}x_{2} + 12x_{2}x_{3} - 2x_{1}x_{3}$$

Write down the matrix form corresponding to the quadratic form

$$2x^2 + 8z^2 + 4xy + 10xz - 2yz$$

Solution:

The matrix of the quadratic form is given by

$$a_{11}$$
 = coeff of x^2 = 2 , a_{22} = coeff of y^2 = 0 , a_{33} = coeff of z^2 = 8
$$a_{12} = a_{21} = \frac{1}{2} (\text{coeff of xy}) = \frac{4}{2} = 2, \ a_{13} = a_{31} = \frac{1}{2} (\text{coeff of xz}) = \frac{10}{2} = 5$$

$$a_{23} = a_{32} = \frac{1}{2} \text{(coeff of yz)} = \frac{-2}{2} = -1$$

$$A = \begin{vmatrix} 2 & 2 & 5 \\ 2 & 0 & -1 \\ 5 & -1 & 8 \end{vmatrix}$$

Find the Rank, index and signature of the quadratic form whose canonical form is $x_1^2 + 2x_2^2 - 3x_3^2$

Solution:

Rank (r) = Number of Non zero terms in the C.F = 3

Index (p) = Number of Positive terms in the C.F = 2

Signature (s) = 2p - r = 1

Identify the Nature, Rank, Index and Signature of the quadratic form $2x_1x_2 + 2x_2x_3 + 2x_3x_1$.

Solution:

The matrix of the quadratic form is given by

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

The characteristics equation is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$.

 $S_1 = Sum of the main diagonal elements = 0$

 $S_2 = Sum$ of the minors of the main diagonal element

$$=(0-1)+(0-1)+(0-1)=-3$$

$$S_3 = |A| = 2$$

The characteristics equation is $\lambda^3 - 3\lambda - 2 = 0$.

$$\Rightarrow (\lambda +1)^2(\lambda -2)=0.$$

 \therefore Eigen values are $\lambda = -1, -1, 2$.

Nature: indefinite

Rank (r) = Number of non zero eigen values = 3.

Index (p) = Number of positive eigen values = 1.

Signature (s) =
$$2p - r = 2(1) - 3 = -1$$
.

Reduce the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 - 8x_2x_3 + 4x_3x_1$ into canonical form

by means of an orthogonal transformation.

Solution:

Given:
$$8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 - 8x_2x_3 + 4x_3x_1$$

The matrix of the quadratic form is given by

$$A = \begin{bmatrix} co - eff \ of \ x_1^2 & \frac{1}{2}co - eff \ of \ x_1x_2 & \frac{1}{2}co - eff \ of \ x_1x_3 \\ \frac{1}{2}co - eff \ of \ x_1x_2 & co - eff \ of \ x_2^2 & \frac{1}{2}co - eff \ of \ x_2x_3 \\ \frac{1}{2}co - eff \ of \ x_1x_3 & \frac{1}{2}co - eff \ of \ x_2x_3 & co - eff \ of \ x_3^2 \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \end{bmatrix}$$

Characteristic equation:

$$\lambda^{3} - s_{1}\lambda^{2} + s_{2}\lambda - s_{3} = 0.....(1)$$

 $s_1 = sum of the leading diagonal$

$$s_1 = 8 + 7 + 3 = 18$$

 $s_2 = \text{sum of the minors of its leading diagonal}$

$$s_2 = \begin{vmatrix} 7 & -4 \\ -4 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix}$$

$$s_2 = (21-16)+(24-4)+(56-36)$$

$$s_2 = 45$$

$$s_3 = Determinant of A$$

$$s_3 = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$$

$$s_3 = 8(21-16) + 6(-18+8) + 2(24-14)$$

$$s_3 = 40 - 60 + 20$$

$$s_3 = 0$$

Substitute in (1)

$$\lambda^3 - 18\lambda^2 + 45\lambda = 0$$

$$\lambda \left(\lambda^2 - 18\lambda + 45 \right) = 0$$

$$\lambda = 0; \lambda^2 - 18\lambda + 45 = 0$$

$$\lambda = 0; (\lambda - 3)(\lambda - 15) = 0$$

$$\lambda = 0$$
; $\lambda = 3$; $\lambda = 15$

Eigen vectors:

$$(A - \lambda I)X = 0$$

$$(A-\lambda I)$$
 is nothing but subtract λ from A

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Case (i) when
$$\lambda = 0$$

$$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$8x_1 - 6x_2 + 2x_3 = 0$$
....(1)

$$-6x_1 + 7x_2 - 4x_3 = 0$$
....(2)

$$2x_1 - 4x_2 + 3x_3 = 0$$
....(3)

Solving any two distinct equation (2) and (3)

$$\frac{x_1}{21-16} = \frac{x_2}{-8+18} = \frac{x_3}{24-14}$$

$$\frac{x_1}{5} = \frac{x_2}{10} = \frac{x_3}{10}$$

when
$$\lambda = 0$$
 its eigen vector $X_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

Case (ii) when $\lambda = 3$

$$\begin{pmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$5x_1 - 6x_2 + 2x_3 = 0$$
....(1)

$$-6x_1 + 4x_2 - 4x_3 = 0$$
....(2)

$$2x_1 - 4x_2 + 0x_3 = 0$$
....(3)

Solving any two distinct equation (2) and (3)

$$\frac{x_1}{0-16} = \frac{x_2}{-8-0} = \frac{x_3}{24-8}$$

$$\frac{x_1}{-16} = \frac{x_2}{-8} = \frac{x_3}{16}$$

$$\frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{-2}$$

when
$$\lambda = 3$$
 its eigenvector $X_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

Case (iii) when
$$\lambda = 15$$

$$\begin{pmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$-7x_1-6x_2+2x_3=0$$
.....(1)

$$-6x_1 - 8x_2 - 4x_3 = 0$$
....(2)

$$2x_1 - 4x_2 - 12x_3 = 0$$
....(3)

Solving any two distinct equation (2) and (3

$$\frac{x_1}{96-16} = \frac{x_2}{-8-72} = \frac{x_3}{24+16}$$

$$\frac{x_1}{80} = \frac{x_2}{-80} = \frac{x_3}{40}$$

$$\frac{x_1}{2} = \frac{x_2}{-2} = \frac{x_3}{1}$$

when
$$\lambda = 15$$
 its eigen vector $X_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$

Normalized model matrix:

$$N = \begin{bmatrix} \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} & \frac{2}{\sqrt{2^2 + 1^2 + (-2)^2}} & \frac{2}{\sqrt{2^2 + (-2)^2 + (1)^2}} \\ \frac{2}{\sqrt{1^2 + 2^2 + 2^2}} & \frac{1}{\sqrt{2^2 + 1^2 + (-2)^2}} & \frac{-2}{\sqrt{2^2 + (-2)^2 + (1)^2}} \\ \frac{2}{\sqrt{1^2 + 2^2 + 2^2}} & \frac{-2}{\sqrt{2^2 + 1^2 + (-2)^2}} & \frac{1}{\sqrt{2^2 + (-2)^2 + (1)^2}} \end{bmatrix}$$

$$N = \begin{pmatrix} \frac{1}{\sqrt{9}} & \frac{2}{\sqrt{9}} & \frac{2}{\sqrt{9}} \\ \frac{2}{\sqrt{9}} & \frac{1}{\sqrt{9}} & \frac{-2}{\sqrt{9}} \\ \frac{2}{\sqrt{9}} & \frac{-2}{\sqrt{9}} & \frac{1}{\sqrt{9}} \end{pmatrix}$$

$$N = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix} & N^{T} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$

Consider the orthogonal transformation

$$D = N^T A N$$

$$D = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & -2 \\ 10 & -10 & 5 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{pmatrix}$$

Canonical form:

$$(y_1 \quad y_2 \quad y_3) D \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (y_1 \quad y_2 \quad y_3) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$=0y_1^2+3y_2^2+15y_3^2$$

Reduce the Q.F $10x_1^2 + 2x_2^2 + 5x_3^2 + 6x_2x_3 - 10x_3x_1 - 4x_1x_2$. to a canonical form and hence find rank, index, signature.

Solution:

The matrix of the Q.F is

$$A = \begin{bmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{bmatrix}$$

The C.E of A is
$$|A - \lambda I| = 0$$

$$\Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$
Where $S_1 = 10 + 2 + 5 = 17$

$$S_2 = 10 - 9 + 50 - 25 + 20 - 4 = 42$$

$$S_3 = 10 + 10 - 20 = 0$$

... The characteristic equation is $\lambda^3 - 17\lambda^2 + 42\lambda = 0$

To find the Eigenvalues:

$$\lambda^{3} - 17\lambda^{2} + 42\lambda = 0$$
$$\lambda(\lambda^{2} - 17\lambda + 42) = 0$$
$$\lambda = 0.3.14$$

To find the Eigen vectors solve $(A - \lambda I)X = 0$

$$(10 - \lambda)x_1 - 2x_2 - 5x_3 = 0$$
$$-2x_1 + (2 - \lambda)x_2 + 3x_3 = 0$$
$$-5x_1 + 3x_2 + (5 - \lambda)x_3 = 0$$

Case 1: when $\lambda = 0$

$$10x_1 - 2x_2 - 5x_3 = 0 \quad (1)$$

$$-2x_1 + 2x_2 + 3x_3 = 0 \quad (2)$$

$$-5x_1 + 3x_2 + 5x_3 = 0 \quad (3)$$

Solving(1) and (2) we get

$$\frac{x_1}{4} = \frac{x_2}{-20} = \frac{x_3}{16}$$

$$\frac{x_1}{1} = \frac{x_2}{-5} = \frac{x_3}{4}$$

Hence the corresponding Eigenvector is $X_1 = \begin{bmatrix} -5 \\ 4 \end{bmatrix}$

case 2: When $\lambda = 3$ the eigenvector is

$$7x_1 - 2x_2 - 5x_3 = 0 (4)$$

$$-2x_1 - x_2 + 3x_3 = 0 (5)$$

$$-5x_1 + 3x_2 + 2x_3 = 0 (6)$$

Solving(4) and (5) we get

$$\frac{x_1}{-11} = \frac{x_2}{-11} = \frac{x_3}{-11}$$

$$\frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{1}$$

Hence the corresponding Eigenvector is $X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

case 3: When $\lambda = 14$ the eigenvector is

$$-4x_1 - 2x_2 - 5x_3 = 0 \quad (7)$$

$$-2x_1 - 12x_2 + 3x_3 = 0 \quad (8)$$

$$-5x_1 + 3x_2 - 9x_3 = 0 (9)$$

Solving (7) and (8) we get

$$\frac{x_1}{-66} = \frac{x_2}{22} = \frac{x_3}{44}$$

$$\frac{x_1}{-3} = \frac{x_2}{1} = \frac{x_3}{2}$$

Hence a corresponding Eigenvector is $X_3 = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$

To find model matrix

The normalised model matrix is

$$N = \begin{bmatrix} \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} \\ \frac{-5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\ \frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} \end{bmatrix}$$

$$\mathbf{N} = \begin{bmatrix} \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} \\ \frac{-5}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} \\ \frac{4}{\sqrt{42}} & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} \end{bmatrix} \qquad \mathbf{N}^{\mathrm{T}} = \begin{bmatrix} \frac{1}{\sqrt{42}} & \frac{-5}{\sqrt{42}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{-3}{\sqrt{14}} & \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} \end{bmatrix}$$

$$\mathbf{N}^{\mathrm{T}} \mathbf{A} \mathbf{N} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14 \end{bmatrix} = \mathbf{D}$$

Now
$$Y^T DY = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 14 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
$$= 0y_1^2 + 3y_2^2 + 14y_3^2$$

which is the required canonical form.

Rank = 2

Index = 2

Signature = 2

Nature = Positive semi definite

