Definition: Tangent line to the Curve y = f(x) at the point P(a, f(a)) is the line largent P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 Provided that this

limit exists.

$$m = \lim_{n \to 0} \frac{f(a+h) - f(a)}{h}.$$

Definition: Derivative,

The derivative of a function of at a number a

denoted by
$$f'(a)$$
, is
$$f'(a) = \frac{f(a+h) - f(a)}{h}$$
 if this limit exists.

(or)
$$f'(\alpha) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 $f'(\alpha) = \lim_{h \to 0} \frac{f(x+h) - f(\alpha)}{h}$
Note: $y = f(\alpha)$ at $(a, f(\alpha))$ is the time through $(a, f(\alpha))$ whose slope is equal to $f'(\alpha)$.

Find the equation of the langent like to the Parabola $y = x^2 - 8x + 9$ at the Point (3, -6).

Solo Given:
$$y = f(x) = x^2 - 8x + 9$$

$$\frac{dy}{dx} = 2x - 8$$

 $\begin{bmatrix} (x, y_1) \\ (3, -b) \end{bmatrix}$

$$\left(\frac{dy}{dx}\right)_{xt}(3-b) = 2(3)-8$$

$$m=-2$$

The equation of the langent line at (3,-6)

$$y-y_1=m\left(x-x_1\right)$$

$$y = -2x + 6 - 6$$

$$y = -2x + 6 - 6$$

$$y = -2x + 6 - 6$$

$$|y=-2x| \Rightarrow 2x+y=0/1.$$

2. Find the slope of the langant line to the

Parabola y = 4x-x2 at (1,3): (m) 1 10 mb 11 del

(1)

Given:
$$y = 4x - x^2$$

$$\frac{dy}{dx} = y' = f'(x) = 4 - 2x$$

3. Find the equation of the largent line to the curve 3 at the given Point $y = \frac{3}{2}$, (3,1).

30/0

$$y = f(x) = \frac{3}{2}x^{3}$$
 (3,1)

$$m = \frac{\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}}{x - 3}$$

$$= \frac{\lim_{x \to 3} \frac{3/x - 1}{x - 3}}{x - 3}$$

$$= \lim_{x \to 3} \frac{3 - x}{x - 3} = \lim_{x \to 3} \frac{3 - x}{x(x - 3)}$$

$$=\frac{\lim_{x\to 3}-(x-3)}{x(x-3)}$$

$$\lim_{x \to 3} -\frac{1}{x} = -\frac{1}{3} \qquad (x_1, y_1)$$

The equation of the largent line at (3,1)

$$y-y_{1} = m(x-x_{1})$$

$$y-1 = -\frac{1}{3}(x-3)$$

$$y-1 = -\frac{1}{3}x+1$$

$$3y-3 = -x+3$$

$$\Rightarrow |3y = -x+6|$$

$$|-x|_{3}+\frac{1}{3}$$

$$|-x|_{3}+\frac{1}{3}$$

4

4. If
$$x^3-x$$
, then find $f'(x) \in f''(x)$.

50/0

hiren:
$$f(x) = x^3 - x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - (x^3 - x)}{h}$$

$$= \lim_{h \to 0} \frac{y^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$$

$$=\lim_{h\to 0}\frac{K(3x^2+3xh+b^2-1)}{K}$$

=
$$\lim_{h \to 0} 3x^2 + 3xh + k^2 - 1$$

$$f'(x) = 3x^2 - 1$$

$$f''(x) = \lim_{h \to 0} \frac{[3(x+h)^2 - 1] - (3x^2 - 1)}{h}$$

$$= \lim_{h \to 0} \frac{[3(x^2 + h^2 + 2xh) - 1] - 3x^2 + 1}{h}$$

=
$$\frac{\ln h}{h \to 0}$$
 $\frac{3x^2 + 3h^2 + bxh - 1 - 3x^2 + 1}{h}$

$$= \lim_{h \to 0} \frac{3h^2 + b\alpha h}{h} = \lim_{h \to 0} \frac{K(3h + b\alpha)}{h}$$

:.
$$f''(x) = \lim_{h\to 0} (3h + bx') = bx$$

5. Find the equation of the largent line and normal line to the Curve at the given point
$$y = 3x^2 - x^3$$
, $(1,2)$.

Soln

Given:
$$y = 3x^2 - x^3$$

$$y' = \frac{dy}{dx} = 6x - 3x^2$$

$$\frac{dy}{dx} = \frac{b(1) - 3(1)^2}{(1,2)} = b - 3 = 3.$$

Equation of the largest line is

$$y-2 = 3(x-1)$$

 $y-2 = 3x-3$

$$y = 3x - 3 + 2$$

$$y = 3x - 1$$

Equation of the Normal line is

$$y-y_1=-\frac{1}{m}(x-x_1)$$

$$3y = -x+1+b$$

6. Find the points on the Curve $y = 2x^3 + 3x^2 - 12x + 1$ where the langent is horizontal. $511 \text{ iven}: y = 2x^3 + 3x^2 - 12x + 1$ 30/D

Horizontal largent occur where the derivative

(ie) dy = 0. is Jeno.

 $\frac{dy}{dx} = bx^2 + bx - 12$

 $\frac{dy}{dx} = 0 \implies bx^2 + bx - 12 = 0$ => $b(x^2+x-2)=0$ => $x^2 + x - 2 = 0$

. The curve $y = 2x^3 + 3x^2 - 12x + 1$ has horizontal tangents x=1,-2.

The Corresponding Points on the curve are (1,-b), (-2,21) hands of production

Does the Curve $y = x^4 - 2x^2 + 2$ have any honzontal langent? If so where?

Ans: x=0,1,-1(0,2), (1,1) and (-1,1)

$$\frac{dy}{dx} = \frac{-\frac{\partial y}{\partial x}}{\frac{\partial u}{\partial y}}.$$

1.
$$\dot{\mathbf{u}}$$
 Find $\frac{dy}{dx}$ if $x^3 + y^3 = \frac{bxy}{dx}$

(ii) Find the largent to the equation x3+y3 = bxy (this equation of known as folium of Descartes) at the Point (3,3).

(iii) At What Point in the first quadrant is the langent line horizontal.

Solp (i) Given:
$$x^3 + y^3 = bxy$$
 $\longrightarrow D$

(ie) $x^3 + y^3 - bxy = D$

Let $u = x^3 + y^3 - bxy$

$$\frac{\partial u}{\partial x} = 3x^2 - 6y$$

$$\frac{\partial u}{\partial y} = 3y^2 - 6x$$

$$\frac{dy}{dx} = \frac{-\frac{3x^2 - by}{3y^2 - bx}}{\frac{3y^2 - bx}{3y^2 - bx}}$$

$$= \frac{3(x^2 - 2y)}{\frac{3(y^2 - 2x)}{3y^2 - 2x}}$$

$$\frac{dy}{dx} = \frac{\frac{2y - x^2}{y^2 - 2x}}{\frac{y^2 - 2x}{y^2 - 2x}}$$

(ii)
$$\left(\frac{dy}{dx}\right)_{(3,3)} = \frac{2(3)-(3)^2}{(3)^2-2(3)}$$

$$=\frac{b-9}{9-b}=\frac{-3}{3}=-1$$

: The equation of the largent at the Point (3,3) is

$$y-y_1=m\left(x-x_1\right)$$

$$y-3 = -1(x-3)$$

$$y-3=-x+3$$

$$y = -x + 3 + 3$$

$$y = -x + b$$

$$\therefore x+y=b$$

(iii) The largent line in horizontal if y'=0 (or) dy/=0

$$\frac{2y-x^{2}}{y^{2}-2x}=0$$

(ie) $2y-x^2=0$ and $y^2-2x\neq 0$

$$2y-x^2=0$$

$$\Rightarrow 2y=x^2$$

$$\Rightarrow$$
 $=$ $\frac{\chi^2}{2}$.

Sub.
$$y = x^{2}/2$$
 in eqn. (1), we get

$$\therefore 0 \Rightarrow x^{3} + y^{3} = bxy$$

$$\Rightarrow x^{3} + (x^{3}/2)^{3} = bx (x^{2}/2)$$

$$\Rightarrow x^{3} + \frac{x^{6}}{8} = 3x^{2}$$

$$\Rightarrow x^{5} + x^{6} = 24x^{3}$$

$$\Rightarrow x^{6} = 24x^{3} - 8x^{3}$$

$$\Rightarrow x^{6} = 1bx^{3}$$

$$x^{3} = 1b$$

$$x = (1b)^{1/3} = 2^{1/3}$$

$$y = \frac{(x^{4}/3)^{2}}{2} = \frac{2^{8/3}}{2} = 2^{8/3} \cdot 2^{1} = 2^{8/3}$$
The langent is horizontal at $(x^{2}/2)$, which is approximately $(x^{2}/2)$, $(x^{2}/2)$,

Scanned with CamScanner

2. Use implicit differentiation to find an equation of the langent-line to the Curve at the given point
$$y \sin 2x = x \cos 2y$$
, $(\pi/2, \pi/4)$.

50lD.

-1 . W. / () ;

Given:
$$y \sin 2x = x \cos 2y$$

 $y (2 \cos 2x) + \sin 2x \frac{dy}{dx} = x(-2 \sin 2y \frac{dy}{dx}) + \cos 2y(1)$
 $(\sin 2x + 2x \sin 2y) \frac{dy}{dx} = \cos 2y - 2y \cos 2x$

$$\frac{dy}{dx} = \frac{\cos^{2}y - 2y\cos^{2}x}{\sin^{2}x + 2x\sin^{2}y}$$

$$\left(\frac{dy}{dx}\right)_{(\frac{y_{2}}{y_{2}}, \frac{y_{4}}{y_{4}})} = \frac{\cos^{2}(\frac{y_{4}}{y_{4}}) - 2(\frac{y_{4}}{y_{4}})\cos^{2}(\frac{y_{4}}{y_{4}})}{\sin^{2}(\frac{y_{2}}{y_{4}}) + 2(\frac{y_{4}}{y_{4}})\sin^{2}(\frac{y_{4}}{y_{4}})}$$

$$= \frac{0-2(74)(-1)}{0+2(74)(1)}$$

$$=\frac{\chi(\sqrt{4})}{\chi(\sqrt{4})}=\sqrt{4}\chi^{2}$$

$$(2) = \frac{2}{2}$$

$$(2) = \frac{2}{2}$$

$$(2) = \frac{2}{2}$$

:. Equation of langent is
$$y-y_1 = m(x-x_1)$$

 $y-y_4 = y_2(x-y_2)$
 $y-y_4 = y_2x-y_4$
 $y=y_2x-y_4+y_4$
 $y=y_2x-y_4+y_4$
 $y=y_2x-y_4$

3. Find the first two derivatives for x4+44=16.

Let
$$u = x^4 + y^4 - 1b$$

$$\frac{\partial u}{\partial x} = 4x^3$$

$$\frac{\partial u}{\partial y} = 4y^3$$

$$\frac{dy}{dz} = \frac{-\frac{\partial y}{\partial x}}{\frac{\partial y}{\partial y}} = -\frac{4x^3}{4y^3} = -\frac{x^3}{y^3}$$

$$\int_{a}^{\infty} \frac{dy}{dx} = \frac{-x^3}{y^3}$$

Again diff. W.r. to 'x' on both sides

$$\frac{d^{2}y}{dx^{2}} = - \frac{y^{3}(3x^{2}) - x^{3}(3y^{2})}{(y^{3})^{2}} \frac{dy}{dx}$$

$$= - \frac{3x^2y^3 - 3x^3y^2(-x^3y^3)}{y^6}$$

$$= -\frac{3x^{2}y^{3} + 3x^{3}y}{y^{5}}$$

$$= -\frac{3x^{2}y^{4} + 3x^{5}}{y^{7}}$$

$$= \frac{3x^2y^4 + 3x^6}{y^7}$$

$$=-\frac{3x^2(y+x^4)}{y^7}$$

$$y'' = \frac{d^3y}{dx^2} = -\frac{3x^2(16)}{y7} = -\frac{48x^2}{y7}$$

UNIT-1 DIFFERENTIAL CALCULUS

SYLLABUS

- ☐ REPRESENTATION OF FUNCTIONS
- ☐ LIMIT OF A FUNCTION
- ☐ CONTINUITY OF A FUNCTION
- ☐ DERIVATIVES OF A FUNCTION
- ☐ MAXIMA AND MINIMA OF A FUNCTION OF SINGLE VARIABLE.

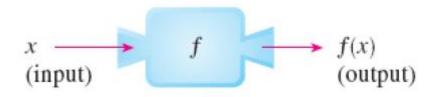
Descrive: To provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. Single variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

Dutcomes: Able to use both the limit definition and rules of differentiation to differentiate functions and apply differentiation to solve maxima and minima problems.

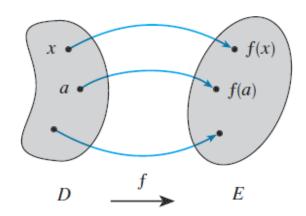
DIFFERENTIAL CALCULUS

Definition

Machine diagram for a function f



Arrow diagram for f



A **function** f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E. The set D is called the **domain** of the function.

The number f(x) is the value of f at x and is read "f of x."

The **range** of f is the set of all possible values of f(x) as x varies throughout the domain.

A symbol that represents an arbitrary number in the *domain* of a function *f* is called an **independent** variable.

A symbol that represents a number in the *range* of f is called a **dependent variable**.

DIFFERENTIAL CALCULUS

The domain conversion

Function	Domain (x)	Range $(y \text{ or } f(x))$
$y = x^2$	$(-\infty, \infty)$	$[0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	R – {0} Non zero Real numbers	R - {0}
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]
$y = \sin x$	$(-\infty, \infty)$	[-1, 1]
	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ principal domain	
$y = \cos x$	$(-\infty, \infty)$	[-1.1]
	[0, π] principal domain	
$y = \tan x$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ principal domain	$(-\infty, \infty)$
$y = e^{x}$	$(-\infty, \infty)$	$(0, \infty)$
$y = e^x$ $y = \log_e^x$	$(0, \infty)$	$(-\infty,\infty)$

DIFFERENTIAL CALCULUS

1. Find the domain of each function.

(a)
$$f(x) = \sqrt{x+2}$$
 (b) $g(x) = \frac{1}{x^2 - x}$

Solution:

(a) Because the square root of a negative number is not defined (as a real number), the domain of f consists of all values of x such that $x + 2 \ge 0$.

This is equivalent to $x \ge -2$, so the domain of f(x) is the interval $[-2, \infty)$.

(b) Since
$$g(x) = \frac{1}{x^2 - x} = \frac{1}{x(x-1)}$$

When x = 0 or x = 1 g(x) is not defined. Therefore the domain of g(x) is the interval $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$

Definition

There are four possible ways to represent a function:

- verbally (by a description in words)
- > numerically (by a table of values)
- visually (by a graph)
- algebraically (by an explicit formula)

LIMIT OF A FUNCTION

A **limit** is the idea of looking at what happens to a function as you *approach* particular values of x.

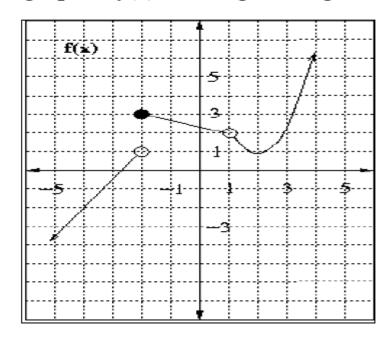
A limit is strictly the behavior of a function "near" a point.

Left-hand and right-hand limits are the idea of looking at what happens to a function as you approach a particular value of x, from a particular direction.

The **left hand limit** is the limit of f(x) as x approaches the value of a from the left is written $\lim_{x\to a^-} f(x)$

The **right hand limit** is the limit of f(x) as x approaches the value of a from the right is written $\lim_{x\to a^+} f(x)$

Example 1: Consider the graph of f(x) in the given figure below.

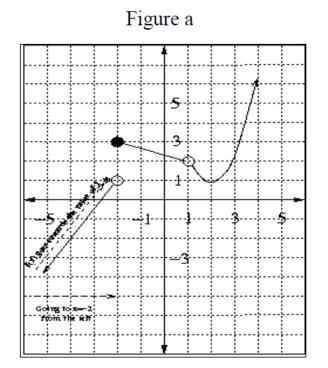


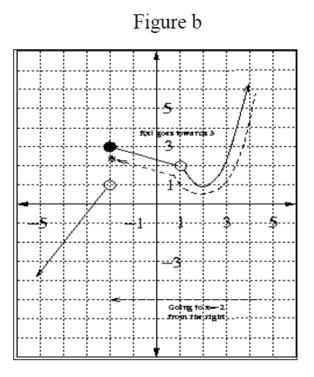
The following observations can be made

when x = -2, we notice there is a "break" in the function.

However, if we approach x = -2 "from the left" (Figure a) we can see that the function values are getting closer and closer to 1.

On the other hand, if we approach x = -2 "from the right" (Figure b) we can see that the function values are getting closer and closer to 3.

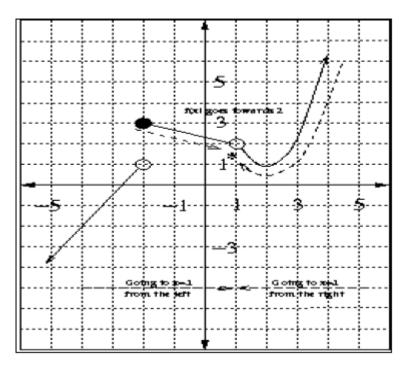




When x = 1, we notice there is a hole in the function.

If we approach f(x) from the left or from the right (Figure c), we can see that the function values are getting closer and closer to 2.

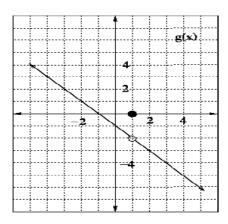
Figure c



Therefore, we have $\lim_{x \to -2^{-}} f(x) = 1$ $\lim_{x \to -2^{+}} f(x) = 3$ $\lim_{x \to 1^{-}} f(x) = 2$ $\lim_{x \to 1^{+}} f(x) = 2$

Using the given graph of g(x), find the following left- and right-hand limits.

$$\lim_{x\to 0^{-}} g(x)$$
, $\lim_{x\to 0^{+}} g(x)$, $\lim_{x\to 1^{-}} g(x)$, $\lim_{x\to 1^{+}} g(x)$.



Solution:

The graph of g(x) implies as x approaches θ from the left, we can see that the function values are getting closer and closer to -1. (Fig a) So, $\lim_{x\to 0^-} g(x) = -1$

As x approaches θ from the right, we can see that the function values are getting closer and closer to -1.

(Fig b)So,
$$\lim_{x\to 0^+} g(x) = -1$$

As x approaches 1 from the left, we can see that the function values are getting closer and closer to -2.

c) So,
$$\lim_{x\to 1^{-}} g(x) = -2$$

As x approaches l from the right. You can see that the function values are getting closer and closer to -2.

(Fig d) So,
$$\lim_{x\to 1^+} g(x) = -2$$

Fig a

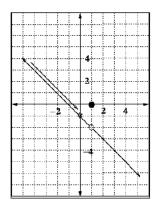


Fig b

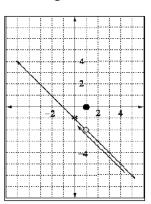


Fig c

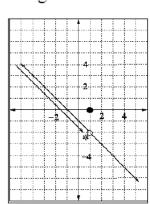
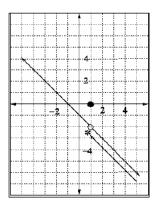


Fig d



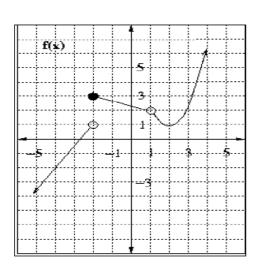
By considering both the left- and right-hand limits of a function as you approach a particular value of x, you can determine whether or not the limit of the function at that point exists.

<u>DEFINITION</u>: For a given function y = f(x), if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = l$, finite answer, we say that

limit exists at x = a and we write that $\lim_{x \to a} f(x) = l$.

Otherwise limit does not exist.

Example 2: Using the graph of f(x) below, find the following limits. $\lim_{x\to 1} f(x)$, $\lim_{x\to -2} f(x)$.



Already in example 1, we have got $\lim_{x\to 1^-} f(x) = 2$ and $\lim_{x\to 1^+} f(x) = 2$

Therefore, by definition, since $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = 2$, then $\lim_{x\to 1} f(x) = 2$.

3.

Find $\lim_{x \to 1} \frac{1}{x - 1}$, if it exists

Solution: Consider $f(x) = \frac{1}{x - 1}$

X	.9	0.99	0.999	0.9999	1.0	1.0001	1.001	1.01	1.1
f(x)	-10	-100	-1000	-10000	-	10000	1000	100	10

By the observation of the values $\lim_{x \to 1^+} \frac{1}{x-1} = \infty$ and $\lim_{x \to 1^-} \frac{1}{x-1} = -\infty$.

Left hand limit \neq Right hand limit

Thus limit does not exist.

4. Use conjecture method to determine the limit $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Solution: Consider $f(x) = \frac{e^x - 1}{x}$

X	-1	-0.1	-0.001	-0.0001	0.0	0.0001	0.001	0.1	1
f(x)	0.632	0.956	0.999	1.000	-	1.000	1.001	1.052	1.718

From the table it appears that as x gets closer to 0, the function f(x) gets closer to 1.

Therefore we conclude $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

Show that
$$\lim_{x \to 0} |x| = 0$$

Solution:
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Since
$$|x| = x$$
, for $x > 0$,

$$\therefore \lim_{x \to 0^+} \left| x \right| = \lim_{x \to 0^+} x = 0$$

For
$$x < 0$$
, $|x| = -x$,

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{+}} (-x) = 0$$

$$\therefore \lim_{x \to 0^+} |x| = \lim_{x \to 0^-} |x| = \lim_{x \to 0} |x| = 0$$

6. Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist

Solution:
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

For
$$x > 0$$
, $|x| = x$, $\therefore \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1$

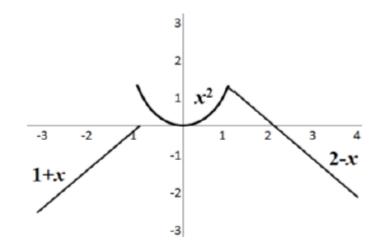
For
$$x < 0$$
, $|x| = -x$, $\therefore \lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$

$$\therefore \lim_{x \to 0^+} \frac{|x|}{x} \neq \lim_{x \to 0^-} \frac{|x|}{x} \quad \therefore \text{ limit does not exist.}$$

Sketch the graph of the function $f(x) = \begin{cases} 1+x; & x < -1 \\ x^2; & -1 \le x \le 1 \text{ and use it to determine the value} \\ 2-x; & x \ge 1 \end{cases}$

of "a" for which $\lim_{x\to a} f(x)$ exists?

Solution:



From the graph $\lim_{x\to a} f(x)$ exists for all 'a' except when a = -1,

 \Rightarrow the left and right limits are different at a = -1

8. Find $\lim_{x\to 0} \frac{1}{x^2}$

Solution:

X	-1	-0.5	-0.2	-0.1	-0.05	-0.01	-0.001	0	1	0.5	0.2	0.1	0.05	0.01	0.001
f(x)	1	4	25	100	400	10,000	1,000,000	-	1	4`	25	100	400	10,000	1,000,000

As x becomes close to 0, x^2 also becomes close to 0, and $\frac{1}{x^2}$ becomes very large. Thus the values of f(x) can be made arbitrarily large by taking x close enough to 0.

Thus the values of f(x) do not approach a number, so $\lim_{x\to 0} \frac{1}{x^2}$ does not exist.

PROPERTIES

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

9. Evaluate $\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}$, if it exists.

Solution:

$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{\left(x^2 - 1\right)\left(x^2 + 1\right)}{\left(x - 1\right)\left(x^2 + x + 1\right)}$$

$$= \lim_{x \to 1} \frac{\left(x + 1\right)\left(x - 1\right)\left(x^2 + 1\right)}{\left(x - 1\right)\left(x^2 + x + 1\right)}$$

$$= \lim_{x \to 1} \frac{\left(x + 1\right)\left(x^2 + 1\right)}{\left(x^2 + x + 1\right)} = \frac{\left(1 + 1\right)\left(1 + 1\right)}{\left(1 + 1 + 1\right)} = \frac{4}{3}$$

10. Evaluate
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

Solution:
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3}$$

$$= \lim_{t \to 0} \frac{t^2 + 9 - 9}{t^2} \frac{1}{\sqrt{t^2 + 9} + 3}$$

$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3}$$

$$=\frac{1}{6}$$

EXCERCISES

11.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

12.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12$$

13.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2} = \lim_{x \to 2} (x - 3) = -1$$

14.
$$\lim_{x \to \infty} \frac{x^2 - 4x + 3}{x^3 - 2} = \lim_{x \to \infty} \frac{x^2}{x^3} = \lim_{x \to \infty} \frac{1}{x} = 0$$

15.
$$\lim_{x \to \infty} \frac{x^2 - 4x + 3}{x^2 - 2} = \lim_{x \to \infty} \frac{x^2}{x^2} = 1$$

16.
$$\lim_{x \to \infty} \frac{x^4 - 4x + 3}{x^3 - 2} = \lim_{x \to \infty} \frac{x^4}{x^3} = \lim_{x \to \infty} \frac{x}{1} = \infty$$
, or Does Not Exist.

SANDWICH THEOREM

The Squeeze theorem (or) The Sandwich Theorem (or) The Pinching Theorem:

If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

Show that
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

Solution: Let
$$g(x) = x^2 \sin\left(\frac{1}{x}\right)$$

Since
$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$$
 does not exist

$$\therefore$$
 we cannot use $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = \lim_{x\to 0} x^2$. $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$

Since
$$-1 \le \sin\left(\frac{1}{x}\right) \le 1 \implies -x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$

Since
$$\lim_{x\to 0} x^2 = 0$$
 and $\lim_{x\to 0} (-x^2) = 0$

$$\therefore \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

CONTINUITY OF A FUNCTION

Definition:

A function f(x) is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$.

A function f(x) is said to be **discontinuous** at a if it is not continuous at a.

Function f has a **discontinuity** at a if any one of the following occurs.

(i) f(a) is not defined in the domain of f.

(ii) $\lim_{x \to a} f(x)$ does not exist or $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$.

(iii) $\lim_{x \to a} f(x) \neq f(a)$

A function f is **continuous from the right** at a number a if $\lim_{x\to a^+} f(x) = f(a)$.

A function f is **continuous from the left** at a number a if $\lim_{x \to a^{-}} f(x) = f(a)$.

A function f is said to be **continuous in an interval** [a,b] if it is continuous at each and every point of the interval.

Note: If f is defined only on one side of end point of the interval [a,b] then **continuous at the end point** mean f is continuous from the right or continuous from the left. i.e. $\lim_{x \to a^+} f(x) = f(a)$ and $\lim_{x \to b^-} f(x) = f(b)$.

The following functions are continuous at every point in their domains:

- ✓ constant functions
- ✓ polynomials
- ✓ rational functions
- ✓ root functions
- ✓ trigonometric functions
- ✓ inverse trigonometric functions
- ✓ exponential functions
- ✓ logarithmic functions

Results of continuous function

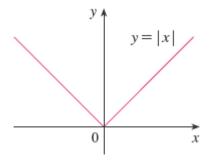
If f(x) and g(x) are two continuous functions at a and if c is any constant then the following functions are also continuous at a.

- (i) f(x) + g(x)
- (ii) f(x) g(x)
- (iii) c f(x)
- (iv) f(x) g(x)
- (v) $\frac{f(x)}{g(x)}$, $g(x) \neq 0$.
- (vi) If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$
- (vii) If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

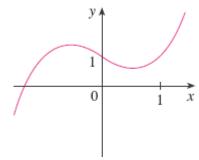
Graphical representation of continuous function

The graph of continuous function can be drawn without removing your pen from the paper.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

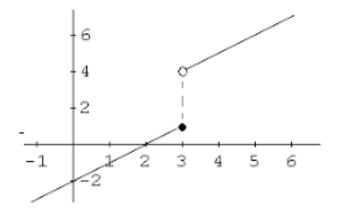


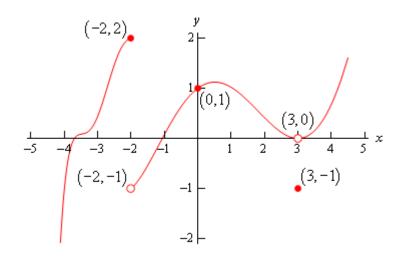
$$y = x^3 - x + 1$$



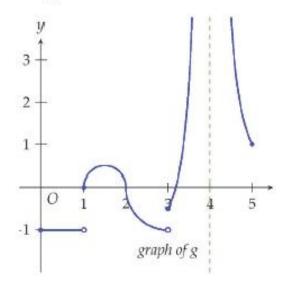
Graphical representation of discontinuous function

The graph of discontinuous function can't be drawn without lifting the pen from the paper because a hole or break or jump occurs in the graph.

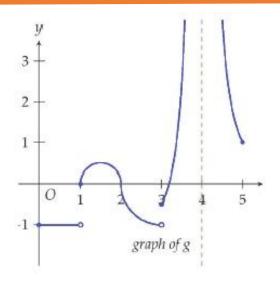




The graph of a function g is shown.

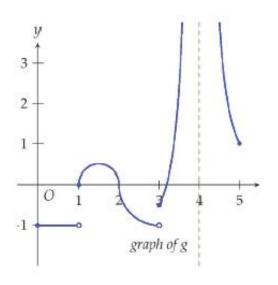


- (a) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous?
- (b) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous from the right?
- (c) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous from the left?

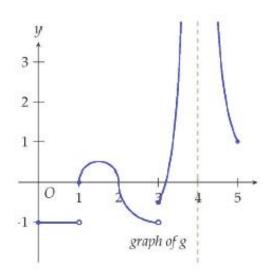


Solution:

- (a) The function g is continuous at a = 0, 2, 5. In fact,
 - (i) The function g is continuous at a = 0, since $\lim_{x \to 0^+} g(x) = g(0) = -1$.
 - (ii) The function g is not continuous at a=1, since $\lim_{x\to 1^-} g(x) \neq \lim_{x\to 1^+} g(x)$.
 - (iii) The function g is continuous at a=2, since $\lim_{x\to 2^-}g(x)=\lim_{x\to 2^+}g(x)=g(2)=0$.
 - (iv) The function g is not continuous at a = 3, since $\lim_{x \to 3^-} g(x) \neq \lim_{x \to 3^+} g(x)$.
 - (v) The function g is not continuous at a = 4, since g(4) does not exist.
 - (vi) The function g is continuous at a = 5, since $\lim_{x \to 5^-} g(x) = g(5) = 1$.



- (b) The function g is continuous from the right at a = 0, 1, 2, 3. In fact,
 - (i) The function g is continuous from the right at a=0, since $\lim_{x\to 0^+} g(x)=g(0)$.
 - (ii) The function g is continuous from the right at a = 1, since $\lim_{x \to 1^+} g(x) = g(1)$.
 - (iii) The function g is continuous from the right at a=2, since $\lim_{x\to 2^+} g(x)=g(2)$.
 - (iv) The function g is continuous from the right at a = 3, since $\lim_{x \to 3^+} g(x) = g(3)$.
 - (v) The function g is not continuous from the right at a = 4, since g(4) does not exist.
 - (vi) The function g is not continuous from the right at a = 5, since $\lim_{x \to 5^+} g(x)$ does not exist.



- (c) The function g is continuous from the left at a=2,5. In fact,
 - (i) The function g is not continuous from the left at a = 0, since $\lim_{x \to 0^-} g(x)$ does not exist.
 - (ii) The function g is not continuous from the left at a = 1, since $\lim_{x \to 1^-} g(x) \neq g(1)$.
 - (iii) The function g is continuous from the left at a=2, since $\lim_{x\to 2^-} g(x)=g(2)$.
 - (iv) The function g is not continuous from the left at a = 3, since $\lim_{x \to 3^-} g(x) \neq g(3)$.
 - (v) The function g is not continuous from the left at a = 4, since g(4) does not exist.
 - (vi) The function g is continuous from the left at a = 5, since $\lim_{x \to 5^-} g(x) = g(5)$.

1) Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1, 1].

Solution:

If -1 < a < 1, then using the Limit Laws,

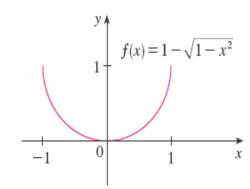
$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(1 - \sqrt{1 - x^2} \right)$$

$$= 1 - \lim_{x \to a} \sqrt{1 - x^2}$$

$$= 1 - \sqrt{\lim_{x \to a} (1 - x^2)}$$

$$= 1 - \sqrt{1 - a^2}$$

$$= f(a)$$



f is continuous at a if -1 < a < 1.

$$\lim_{x \to -1^+} f(x) = 1 = f(-1) \quad \text{and} \quad \lim_{x \to 1^-} f(x) = 1 = f(1)$$

so f is continuous from the right at -1 and continuous from the left at 1.

f is continuous on [-1, 1].

2) Show that the function $g(x) = 2\sqrt{3-x}$ is continuous in $(-\infty,3]$

Solution: For a < 3, we have

$$\lim_{x \to a} g(x) = \lim_{x \to a} 2\sqrt{3 - x}$$

$$= 2 \lim_{x \to a} \sqrt{3 - x}$$

$$= 2\sqrt{\lim_{x \to a} (3 - x)}$$

$$= 2\sqrt{\lim_{x \to a} 3 - \lim_{x \to a} x}$$

$$= 2\sqrt{3 - a}$$

$$= g(a)$$

So g is continuous at x = a for every a in $(-\infty, 3)$.

Also, $\lim_{x\to 3^-}g(x)=0=g(3)$, so g is continuous from the left at 3.

Thus, g is continuous on $(-\infty, 3]$.

3) Show that the function $f(x) = \frac{2x+3}{x-2}$ is continuous in $(2,\infty)$

Solution: For a > 2, we have

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{2x + 3}{x - 2} = \frac{\lim_{x \to a} (2x + 3)}{\lim_{x \to a} (x - 2)}$$

$$= \frac{2 \lim_{x \to a} x + \lim_{x \to a} 3}{\lim_{x \to a} x - \lim_{x \to a} 2}$$

$$= \frac{2a + 3}{a - 2}$$

$$= f(a)$$

Thus, f is continuous at x = a for every a in $(2, \infty)$; that is, f is continuous on $(2, \infty)$.

Show that the function $f(x) = \begin{cases} \sin x & \text{if } x < \pi/4 \\ \cos x & \text{if } x \ge \pi/4 \end{cases}$ is continuous in $(-\infty, \infty)$

Solution:

We know that trigonometric functions are continuous.

Therefore $\sin x$ is continuous in $(-\infty, \pi/4)$ and $\cos x$ is continuous in $(\pi/4, \infty)$.

Thus f(x) is continuous in $(-\infty, \pi/4) \cup (\pi/4, \infty)$.

$$\lim_{x \to (\pi/4)^{-}} f(x) = \lim_{x \to (\pi/4)^{-}} \sin x = \sin \frac{\pi}{4} = 1/\sqrt{2}$$

$$\lim_{x \to (\pi/4)^+} f(x) = \lim_{x \to (\pi/4)^+} \cos x = 1/\sqrt{2}$$

Thus, $\lim_{x \to (\pi/4)} f(x)$ exists and equals $1/\sqrt{2}$,

Also, $f(\pi/4) = 1/\sqrt{2}$, Therefore, f is continuous at $\pi/4$,

so f is continuous on $(-\infty, \infty)$.

5) Use continuity to evaluate $\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right)$.

Solution:

Take
$$f(x) = \arcsin x$$
 and $g(x) = \frac{1 - \sqrt{x}}{1 - x} \Rightarrow f(g(x)) = \arcsin \left(\frac{1 - \sqrt{x}}{1 - x}\right)$.

Because arcsin is a continuous function, apply result (vi) $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$

$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{(1 - \sqrt{x})(1 + \sqrt{x})}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1}{1 + \sqrt{x}}\right)$$

$$= \arcsin\frac{1}{2} = \frac{\pi}{6}$$

Practice problems:

Use continuity to evaluate (i) $\lim_{x \to \pi} \sin(x + \sin x)$ (ii) $\lim_{x \to 1} e^{x^2 - x}$

6) Where are the following functions continuous?

(a)
$$h(x) = \sin(x^2)$$
 (b) $F(x) = \ln(1 + \cos x)$

Solution:

(a) Take
$$f(x) = \sin x$$
 and $g(x) = x^2 \Rightarrow f(g(x)) = \sin(x^2) = h(x)$.

Since f(x) is trigonometric function then it is continuous everywhere.

Since g(x) is polynomial then it is also continuous on R.

Thus by result (vii) h(x) = f(g(x)) is also continuous on R.

(b) Take
$$f(x) = \operatorname{In} x$$
 and $g(x) = 1 + \cos x \Rightarrow f(g(x)) = \operatorname{In} (1 + \cos x) = F(x)$.

Since f(x) is logarithmic function then it is continuous for x > 0.

Since g(x) is the sum of constant and trigonometric functions then it is also continuous.

Thus by result (vii) F(x) = f(g(x)) is also continuous when $(1+\cos x) > 0$.

i.e. F(x) is not defined when $1+\cos x = 0$ and this happens when $x = \pm \pi$, $= \pm 3\pi$,

Thus F(x) has discontinuities when x is an odd multiples of π and it is continuous on the intervals between these values.

7)

Where is the function $f(x) = \frac{\ln x + \tan^{-1}x}{x^2 - 1}$ continuous?

Solution:

Since logarithmic functions and inverse trigonometric functions are continuous in their domain then the function In x is continuous for x > 0 and $\tan^{-1} x$ is continuous on $(-\infty, \infty)$

Thus, by result (i) In $x + \tan^{-1} x$ is continuous on $(0, \infty)$.

The denominator x^2 -1 is a polynomial, so it is continuous everywhere. Therefore, by result (v)

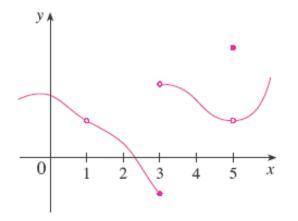
f is continuous at all positive numbers x except x = 1.

So f is continuous on the intervals (0, 1) and $(1, \infty)$.

Practice problem:

Show that $f(x) = \frac{7x^5 + x - 2}{x^2 - 4}$ is continuous on $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$.

Continuous function Results on cont. funs.



Solution:

The above graph has a hole (break) at x = 1 and f(1) is not defined. So f is discontinuous at 1.

The graph also has a break when a = 3, but the reason for the discontinuity is different. Here, f(3) is defined, but $\lim_{x\to 3} f(x)$ does not exist (because the left and right limits are different). So f is discontinuous at 3.

Here, f(5) is defined and $\lim_{x\to 5} f(x)$ exists (because the left and right limits are the same).

But $\lim_{x \to 5} f(x) \neq f(5)$

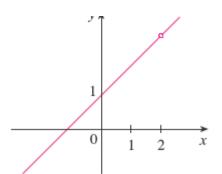
So f is discontinuous at 5.

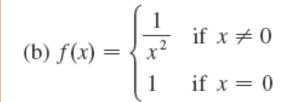
9) Where are each of the following functions discontinuous?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

Solution:

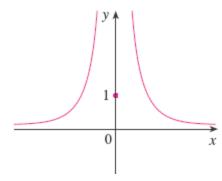
Notice that f(2) is not defined, so f is discontinuous at 2.





Solution:

Here f(0) = 1 is defined but



$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2}$$
 does not exist. $\lim_{x \to 0} (1/x^2) = \infty$ So f is discontinuous at 0.

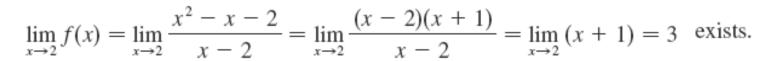
Note:

The kind of discontinuity discussed in (b) is called **infinite discontinuity** because it takes the limit value as infinity.

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

Solution:

Here f(2) = 1 is defined and



But
$$\lim_{x \to 2} f(x) \neq f(2)$$
 (2)

so f is not continuous at 2.

Note:

The kind of discontinuity discussed in (c) is called **removable discontinuity** because it could be removed by redefining f(x) = 3 at x = 2.

(d)
$$f(x) = [x]$$

The greatest integer function is defined by [x] = the largest integer that is less than or equal to x. [4] = 4, [4.8] = 4, $[\pi] = 3$, $[\sqrt{2}] = 1$, $[-\frac{1}{2}] = -1$.

Solution:

At each integer n, the function $f(x) = [\![x]\!]$ is continuous from the right but discontinuous from the left because

$$\lim_{x \to n^+} f(x) = \lim_{x \to n^+} [\![x]\!] = n = f(n)$$

but

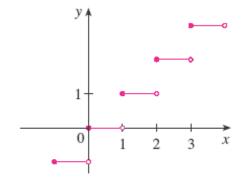
$$\lim_{x \to n^{-}} f(x) = \lim_{x \to n^{-}} [\![x]\!] = n - 1 \neq f(n)$$

 $\lim_{x\to n} ||x||$ does not exist if n is an integer. $f(x) = [\![x]\!]$ has discontinuities at all of the integers

Note:

The kind of discontinuity discussed in (d) is called **jump discontinuity** because the function "jumps" from one value to another.

Definition: The absolute difference between the right hand limit and the left hand limit at a finite discontinuous point is called **jump of the function** at the discontinuous point.



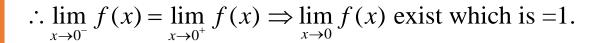
(e)
$$f(x) = \begin{cases} \cos x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 - x^2 & \text{if } x > 0 \end{cases}$$

Solution:

Given f(0) = 0.

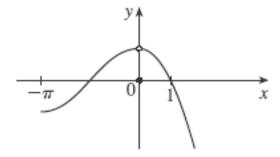
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \cos x = \cos 0 = 1.$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1 - x^2) = 1 - 0 = 1.$$



But
$$\lim_{x\to 0} f(x) \neq f(0)$$
.

 \therefore f is discontinuous at x = 0.

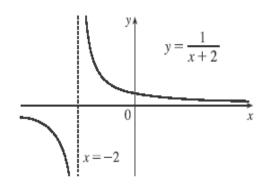


10) **Practice problems:** Discuss the discontinuity of the following functions

(i)
$$f(x) = \frac{1}{x+2}$$
 (Hint: proceed as problem (a))

Solution:

$$f(x) = \frac{1}{x+2}$$
 is discontinuous at $a = -2$ because $f(-2)$ is undefined.

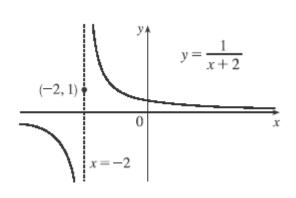


$$(ii) f(x) = \begin{cases} \frac{1}{x+2}, & x \neq -2\\ 1, & x = -2 \end{cases}$$
 (Hint: proceed as problem (b))

Solution:

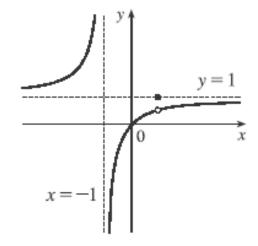
Here
$$f(-2)=1$$
, but $\lim_{x\to -2^-}f(x)=-\infty$ and $\lim_{x\to -2^+}f(x)=\infty$,

so $\lim_{x\to -2} f(x)$ does not exist and f is discontinuous at -2.



(iii)
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$$
 (Hint: proceed as problem (c))

Solution:



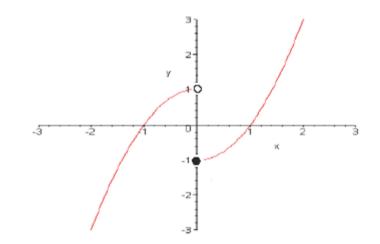
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2},$$

but f(1) = 1, so f is discontinuous at 1.

11) Let the function f(x) be defined for all values of x by $f(x) = \begin{cases} x^2 - 1, & \text{for } x \ge 0 \\ -x^2 + 1, & \text{for } x < 0 \end{cases}$

Draw the graph of the function f(x) and test the continuity from the graph.

Solution.



Here, $f(0) = -1 \implies f$ is defined at x = 0.

 $\lim_{x \to 0^{-}} f(x) = 1 \text{ and } \lim_{x \to 0^{+}} f(x) = -1 \implies \lim_{x \to 0} f(x) \text{ does not exist.}$

 $\therefore f(x)$ is discontinuous at x = 0.

12) For the following f(x), find the points at which f(x) is discontinuous. Also, find the points at

which f(x) is continuous from right and from the left. Justify your answer. $f(x) = \begin{cases} 1+x; & x \le 1 \\ 1/x; & 1 < x < 3 \\ \sqrt{x-3}; & x \ge 3 \end{cases}$

Solution:

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} 1/x = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 1 + x = 2$$

 $\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x) \Longrightarrow \text{At } x = 1$, the function is discontinuous

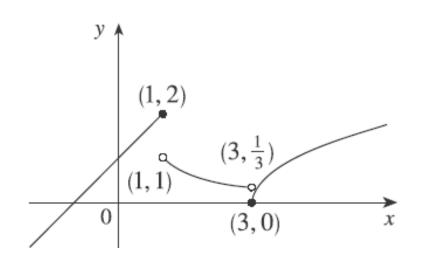
$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} \sqrt{x - 3} = 0 f(x) = \begin{cases} 1 + x; & x \le 1 \\ 1/x; & 1 < x < 3 \\ \sqrt{x - 3}; & x \ge 3 \end{cases}$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} 1/x = \frac{1}{3}$$

 $\lim_{x\to 3^+} f(x) \neq \lim_{x\to 3^-} f(x) \Longrightarrow \text{At } x = 3$, the function is discontinuous

 $\lim_{x\to 3^+} f(x) = 0 = f(3) \Longrightarrow \text{At } x = 3$, the function is continuous from right.

 $\lim_{x\to 1^-} f(x) = 2 = f(1) \Longrightarrow \text{At } x = 1$, the function is continuous from left.

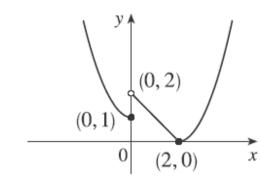


Find the domain of where the following function f is continuous. Also find the numbers at which the function f is discontinuous.

$$f(x) = \begin{cases} 1 + x^2 & \text{if } x \le 0 \\ 2 - x & \text{if } 0 < x \le 2 \\ (x - 2)^2 & \text{if } x > 2 \end{cases}$$

Solution:

$$f(x) = \begin{cases} 1 + x^2 & \text{if } x \le 0\\ 2 - x & \text{if } 0 < x \le 2\\ (x - 2)^2 & \text{if } x > 2 \end{cases}$$



f is continuous on $(-\infty,0)$, (0,2), and $(2,\infty)$ since it is a polynomial on

each of these intervals. Now
$$\lim_{x\to 0^-}f(x)=\lim_{x\to 0^-}(1+x^2)=1$$
 and $\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}(2-x)=2$, so f is

discontinuous at 0. Since f(0) = 1, f is continuous from the left at 0. Also, $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (2 - x) = 0$,

$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (x-2)^2 = 0$$
, and $f(2) = 0$, so f is continuous at 2. The only number at which f is discontinuous is 0.

 \therefore The domain of continuity is $(-\infty,0) \cup (0,\infty)$.

14) **Practice problems:**

For the following f(x), find the points at which f(x) is discontinuous. Also, find the points at

which f(x) is continuous from right and from the left. Justify your answer. $f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ 2-x & \text{if } x > 1 \end{cases}$

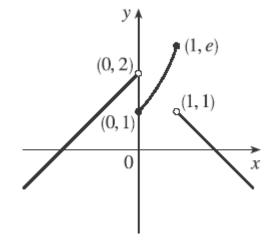
Solution:

f is continuous on $(-\infty,0)$ and $(1,\infty)$ since on each of these intervals it is a polynomia

it is continuous on (0, 1) since it is an exponential.

Now
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (x+2) = 2$$
 and $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^x = 1$,

so f is discontinuous at 0. Since f(0) = 1, f is continuous from the right at 0.



Also
$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} e^x = e$$
 and $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (2-x) = 1$, so f is discontinuous at 1 .

Since f(1) = e, f is continuous from the left at 1.

15) For what value of the constant "c" is the function "f" continuous on $(-\infty, \infty)$,

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Solution:

 $cx^2 + 2x & x^3 - cx$ are polynomials in x \Rightarrow They are continuous everywhere in $(-\infty, \infty)$.

The only point to be checked is x = 2.

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} x^{3} - cx = 2^{3} - c(2) = 8 - 2c$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} cx^{2} + 2x = c2^{2} + 2(2) = 4c + 4$$

If "f" is continuous at x = 2, then $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) = f(2)$

$$\Rightarrow$$
 8 - 2 c = 4 c + 4 \Rightarrow 6 c = 4 \Rightarrow c = $\frac{2}{3}$

Find the values of 'a' and 'b' such that the function $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 \le x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$

is continuous.

Solution:

At
$$x = 2$$
: $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2^{-}} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2^{-}} (x + 2) = 2 + 2 = 4$ $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (ax^2 - bx + 3) = 4a - 2b + 3$ We must have $4a - 2b + 3 = 4$, or $4a - 2b = 1$ (1).

At
$$x = 3$$
:
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (ax^{2} - bx + 3) = 9a - 3b + 3$$
$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (2x - a + b) = 6 - a + b$$
We must have $9a - 3b + 3 = 6 - a + b$, or $\mathbf{10}a - \mathbf{4}b = \mathbf{3}$ (2).

Now solve the system of equations by adding -2 times equation (1) to equation (2).

$$-8a + 4b = -2$$

$$10a - 4b = 3$$

$$2a = 1$$

So $a=\frac{1}{2}$. Substituting $\frac{1}{2}$ for a in (1) gives us -2b=-1, so $b=\frac{1}{2}$

Thus, for f to be continuous $a = b = \frac{1}{2}$.

Note:

The above problem may also be asked in the following manner

Find the values of 'a' and 'b' such that the function $f(x) = \begin{cases} 2+x; & x < 2 \\ ax^2 - bx + 3; & 2 \le x \le 3 \\ 2x - a + b; & x \ge 3 \end{cases}$

is continuous everywhere.

DERIVATIVE OF A FUNCTION

The derivative of a function represents the rate of change of a variable with respect to another variable. For example, the velocity of a body is defined as the rate of change of the location of the body with respect to time. The location is the *dependent* variable while time is the *independent* variable. Now if we measure the rate of change of velocity with respect to time, we get the acceleration of the body. In this case, the velocity is the *dependent* variable while time is the *independent* variable.

The **derivative** of a function f(x) at x = a is defined as $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Note:

- 1. If f is differentiable at a, then f is continuous at a.
- 2. The converse is not always true. (i.e) A function can be continuous at a, but not differentiable at a.

If we write x = a + h, then we have h = x - a and h approaches 0 if and only if x

approaches a. Therefore an equivalent way of stating the definition of the derivative,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

17) Find f'(3) if $f(x) = 4x^2$ using definition of the derivative.

Solution:

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{4(3+h)^2 - 4(3)^2}{h}$$

$$= \lim_{h \to 0} \frac{4(9+h^2+6h) - 36}{h}$$

$$= \lim_{h \to 0} \frac{36+4h^2+24h-36}{h}$$

$$= \lim_{h \to 0} \frac{h(4h+24)}{h}$$

$$= \lim_{h \to 0} (4h+24) = 24$$

$$= 24$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

18) Find $f'\left(\frac{\pi}{4}\right)$ if $f(x) = \sin(2x)$ using the first principle of derivative.

Solution:
$$f'\left(\frac{\pi}{4}\right) = \lim_{h \to 0} \frac{f\left(\frac{\pi}{4} + h\right) - f\left(\frac{\pi}{4}\right)}{h} = \lim_{h \to 0} \frac{\sin\left(2\left(\frac{\pi}{4} + h\right)\right) - \sin\left(2\left(\frac{\pi}{4}\right)\right)}{h}$$

$$= \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{2} + 2h\right) - \sin\left(\frac{\pi}{2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{2}\right)\cos(2h) + \cos\left(\frac{\pi}{2}\right)\sin(2h) - \sin\left(\frac{\pi}{2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(2h) + 0 - 1}{h}$$

$$= \lim_{h \to 0} \frac{\cos(2h) - 1}{h}$$

$$= 0$$

19) Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number a.

Solution:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{\left[(a+h)^2 - 8(a+h) + 9 \right] - \left[a^2 - 8a + 9 \right]}{h}$$

$$= \lim_{h \to 0} \frac{a^2 + 2ah + h^2 - 8a - 8h + 9 - a^2 + 8a - 9}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$$

$$= \lim_{h \to 0} (2a + h - 8) = 2a - 8$$

Theorem: If f is differentiable at a, then f is continuous at a.

Note: The converse of the above theorem is not true.

- Find the domain at which the function f(x) = |x| is continuous and differentiable.
 - **Solution:** We know that, $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
 - Since x and -x are polynomial then |x| is continuous in the interval $(-\infty,0)$ and $(0,\infty)$.
 - Now check the continuity at x = 0.
 - For x > 0, |x| = x, $\therefore \lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0$
 - For x < 0, |x| = -x, $\therefore \lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{+}} (-x) = 0$
 - $\therefore \lim_{x \to 0^+} |x| = \lim_{x \to 0^-} |x| = \lim_{x \to 0} |x| = 0$
 - \Rightarrow at x = 0, f(x) is continuous. Therefore, the domain of the continuity of f(x) is $(-\infty, \infty)$
 - To check the differentiability
 - If x > 0 then |x| = x and |x + h| = x + h.
 - $\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h} = \lim_{h \to 0} \frac{|x+h| |x|}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$
 - \Rightarrow f(x) is differentiable for x > 0

If x < 0 then |x| = -x and |x+h| = -(x+h).

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{-(x+h) - [-(x)]}{h} = \lim_{h \to 0} \frac{-h}{h} = -1$$

 \Rightarrow f(x) is differentiable for x < 0

If
$$x = 0$$
 then $|x| = 0$

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

Now
$$\lim_{h\to 0^+} \frac{|h|}{h} = \lim_{h\to 0} \frac{h}{h} = 1$$

and
$$\lim_{h\to 0^-} \frac{|h|}{h} = \lim_{h\to 0} \frac{-h}{h} = -1$$

$$\lim_{h \to 0^+} \frac{|h|}{h} \neq \lim_{h \to 0^-} \frac{|h|}{h} \implies \lim_{h \to 0} \frac{|h|}{h} \text{ does not exist.} \implies f'(0) \text{ does not exist.}$$

 \Rightarrow f(x) is differentiable for x > 0 and x < 0 but not differentiable at x = 0.

Therefore, the domain of the differentiability of f(x) is $(-\infty, 0) \cup (0, \infty)$

DIFFERENTIATION FORMULA

1)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

2)
$$\frac{d}{dx}$$
 (constant) = 0

3)
$$\frac{d}{dx}(\sin x) = \cos x$$

4)
$$\frac{d}{dx}(\sin nx) = n\cos nx$$

5)
$$\frac{d}{dx}(\cos x) = -\sin x$$

6)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

7)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

8)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

9)
$$\frac{d}{dx}(\cos ec x) = -\cos ec x \cot x$$

10)
$$\frac{d}{dx} (\ln x) = \frac{d}{dx} (\log_e x) = \frac{1}{x}$$

$$11) \frac{d}{dx} (\log_a x) = \frac{1}{x} \frac{1}{\log_e a}$$

12)
$$\frac{d}{dx}(a^x) = a^x \log a$$

13)
$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

14)
$$\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$$

15)
$$\frac{d}{dx} (\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

16)
$$\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

17)
$$\frac{d}{dx} \left(\cot^{-1} x \right) = \frac{-1}{1+x^2}$$

18)
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$

19)
$$\frac{d}{dx} (\cos e^{-1} x) = \frac{-1}{x\sqrt{x^2 - 1}}$$

20)
$$\frac{d}{dx}(\sinh x) = \cosh x$$

1. Find the derivative of $f(x) = 10x^6$.

Solution:
$$f(x) = 10x^6$$
 $f'(x) = \frac{d}{dx}(10x^6) = 10\frac{d}{dx}x^6 = 10(6x^5) = 60x^5$

Derivatives of logarithmic and exponential functions

For the function of the type $f(x) = a^x$, where a is a constant, then $f'(x) = a^x \ln a$.

Derivative of $f(x) = e^x$ is $f'(x) = e^x$

For the logarithmic function $f(x) = \ln x$, $f'(x) = \frac{1}{x}$.

Derivative of $f(x) = \log_a x$ is $f'(x) = \frac{1}{x \ln a}$.

ERENTIAL CALCULUS

2. Find
$$\frac{dy}{dx}$$
. a. $f(x) = 3x^{20} + 10^x$ b. $f(x) = e^x + e^{5x}$

a.
$$f(x) = 3x^{20} + 10^{2}$$

b.
$$f(x) = e^x + e^{5x}$$

Solution.

a.
$$\frac{df}{dx} = 60x^{19} + 10^x \ln 10$$
, $b. \frac{df}{dx} = e^x + 5e^{5x}$

Find
$$\frac{dy}{dx}$$
.

$$f(x) = 3\ln x + 10$$
 b. $f(x) = \log x + 3$

Find
$$\frac{dy}{dx}$$
.

a. $f(x) = 3\ln x + 10$ b. $f(x) = \log x + 3$

Solution. a. $\frac{df}{dx} = \frac{3}{x}$, b. $\frac{df}{dx} = \frac{1}{x \ln 10}$

Find the derivative of $f(x) = 3x^3 + 8$.

Solution:
$$f(x) = 3x^3 + 8$$

$$f'(x) = \frac{d}{dx}(3x^3 + 8) = \frac{d}{dx}(3x^3) + \frac{d}{dx}(8) = 3\frac{d}{dx}(x^3) + 0 = 3(3x^2) = 9x^2$$

Differentiate the functions (addition/subtraction). 5.

a.
$$f(x) = x^2 + 2x - 1$$

b.
$$f(x) = 3x^{20} - 5x^{20}$$

a.
$$f(x) = x^2 + 2x - 1$$
 b. $f(x) = 3x^{20} - 5x$ c. $f(x) = \frac{3}{\sqrt[3]{x}} + \sqrt{x}$

Solution.

a.
$$f'(x) = 2x + 2$$

b.
$$f'(x) = 60x^{19} - 5$$

c.
$$f'(x) = -\frac{1}{x^{4/3}} + \frac{1}{2\sqrt{x}}$$

Product Rule: If f(x) = u(x)v(x), then $f'(x) = u(x)\frac{d}{dx}v(x) + v(x)\frac{d}{dx}u(x)$.

6. Find the derivative of $f(x) = (2x^2 - 6)(3x^3 + 8)$

Solution: Using the product rule,

$$f(x) = (2x^2 - 6)(3x^3 + 8)$$

Let $u(x) = 2x^2 - 6$ and $v(x) = 3x^3 + 8$

Taking the derivative of u(x),

$$\frac{du}{dx} = \frac{d}{dx}(2x^2 - 6) = \frac{d}{dx}(2x^2) - \frac{d}{dx}(6) = 2\frac{d}{dx}(x^2) - 0 = 2(2x) = 4x$$

Taking the derivative of v(x),

$$\frac{dv}{dx} = \frac{d}{dx}(3x^3 + 8) = \frac{d}{dx}(3x^3) + \frac{d}{dx}(8) = 3\frac{d}{dx}(x^3) + 0 = 3(3x^2) = 9x^2$$

Using the formula for the product rule

$$f'(x) = u(x)\frac{d}{dx}v(x) + v(x)\frac{d}{dx}u(x) = (2x^2 - 6)(9x^2) + (3x^3 + 8)(4x)$$
$$= 18x^4 - 54x^2 + 12x^4 + 32x = 30x^4 - 54x^2 + 32x$$

7. Differentiate the functions a. $f(x) = (x^2 + 2x - 1)x^{10}$ b. $f(x) = (3x^{20} - 2)(5x)$

Solution.

a.
$$f'(x) = (2x+2)x^{10} + (x^2+2x-1)10x^9$$

b.
$$f'(x) = (60x^{19})5x + (3x^{20} - 2)5$$

Quotient Rule:

If
$$f(x) = \frac{u(x)}{v(x)}$$
, then $f'(x) = \frac{v(x)\frac{d}{dx}u(x) - u(x)\frac{d}{dx}v(x)}{(v(x))^2}$

Find the derivative of $f(x) = \frac{(2x^2 - 6)}{(3x^3 + 8)}$.

Solution:

Using the Quotient Rule,
$$f(x) = \frac{(2x^2 - 6)}{(3x^3 + 8)}$$

Let
$$u(x) = 2x^2 - 6$$
 and $v(x) = 3x^3 + 8$

Taking the derivative of u(x),

$$\frac{du}{dx} = \frac{d}{dx}(2x^2 - 6) = \frac{d}{dx}(2x^2) - \frac{d}{dx}(6) = 2\frac{d}{dx}(x^2) - 0 = 2(2x) = 4x$$

Taking the derivative of v(x),

$$\frac{dv}{dx} = \frac{d}{dx}(3x^3 + 8) = \frac{d}{dx}(3x^3) + \frac{d}{dx}(8) = 3\frac{d}{dx}(x^3) + 0 = 3(3x^2) = 9x^2$$

Using the formula for the quotient rule, $f'(x) = \frac{v(x)\frac{d}{dx}u(x) - u(x)\frac{d}{dx}v(x)}{(v(x))^2}$

$$f'(x) = \frac{(3x^3 + 8)(4x) - (2x^2 - 6)(9x^2)}{(3x^3 + 8)^2} = \frac{12x^4 + 32x - 18x^4 + 54x^2}{9x^6 + 48x^3 + 64} = \frac{-6x^4 + 54x^2 + 32x}{9x^6 + 48x^3 + 64}$$

Differentiate the function $f(x) = \frac{3x^2 - 5}{\sqrt{x}}$

$$f'(x) = \frac{\sqrt{x}(6x) - (3x^2 - 5)\frac{1}{2\sqrt{x}}}{x}$$

The chain rule:

The chain rule is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Find $\frac{dy}{dx}$ by chain rule.

a.
$$y = u^{10}$$
 and $u = 1 - x^5$ b. $f(x) = (3x^{20} - 2)^{21}$ c. $f(x) = \sqrt{x^2 + 1}$

Solution.

a.
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 10u^9 \cdot (-5x^4) = -50x^4 (1-x^5)^9$$

b.
$$\frac{dy}{dx} = 21(3x^{20} - 2)^{20}(60x^{19}) = 1260x^{19}(3x^{20} - 2)^{20}$$

$$c. \frac{dy}{dx} = \frac{2x}{2\sqrt{x^2 + 1}}$$

Find
$$f'(x)$$
 if $f(x) = ln(3x^2 - 2x)$

Solution: By chain rule.
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{d(\ln u)}{du} \cdot \frac{du}{dx}$$

$$u = 3x^2 - 2x$$

$$\frac{dy}{dx} = \frac{d(\ln u)}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot \frac{d(3x^2 - 2x)}{dx} = \frac{1}{3x^2 - 2x} \cdot (6x - 2)$$

If $f(x) = \sin(\cos(\tan x))$, find f'(x)

$$f'(x) = \frac{d\left(\sin(\cos(\tan x))\right)}{dx}$$

$$f'(x) = \cos(\cos(\tan x)) \frac{d(\cos(\tan x))}{dx}$$

$$= \cos(\cos(\tan x))[-\sin(\tan x)]\frac{d(\tan x)}{dx}$$

$$=-\cos(\cos(\tan x))\sin(\tan x)\sec^2 x$$

Differentiate $y = e^{\sec 3\theta}$

$$\frac{dy}{d\theta} = \frac{d\left(e^{\sec 3\theta}\right)}{d\theta} = e^{\sec 3\theta} \frac{d\left(\sec 3\theta\right)}{d\theta}$$

$$= e^{\sec 3\theta} \sec 3\theta \tan 3\theta \frac{d\left(3\theta\right)}{d\theta}$$

$$= e^{\sec 3\theta} \sec 3\theta \tan 3\theta (3) = 3e^{\sec 3\theta} \sec 3\theta \tan 3\theta$$

Implicit differentiation:

Functions like $3y^2 - 5xy + 9xy^5 - 2 = 0$, where x can not be written as independent variable with respect to another variable y. In this case direct differentiation is either difficult or impossible. To find derivative we will use implicit differentiation using chain rule. Following examples will illustrate the situation.

Find
$$\frac{dy}{dx}$$
 or y'.

a.
$$x^2 + y^2 = 2xy$$

a.
$$x^2 + y^2 = 2xy$$
 b. $3y^2 - 5xy + 9x - 2 = 0$ b. $y^2 = \log x + 3$

b.
$$y^2 = \log x + 3$$

a.
$$x^2 + y^2 = 2xy$$

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(2xy)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(2xy)$$

$$2x + 2y\frac{dy}{dx} = 2x\frac{dy}{dx} + 2y$$

$$2y\frac{dy}{dx} - 2x\frac{dy}{dx} = 2y - 2x$$

$$(2y - 2x)\frac{dy}{dx} = 2y - 2x$$

$$\frac{dy}{dx} = \frac{2y - 2x}{2y - 2x}$$

$$\frac{dy}{dx} = 1$$

b.
$$6yy' - 5y - 5xy' + 9 = 0 \Rightarrow y' = \frac{5y - 9}{6y - 5x}$$

c.
$$2yy' = \frac{1}{x \ln 10} \Rightarrow y' = \frac{1}{2xy \ln 10}$$

If $x^2 - xy + y^2 = 5$, find the value of y' and y''.

Solution: $x^2 - xy + y^2 = 5$

$$\frac{d}{dx}(x^2 - xy + y^2) = \frac{d}{dx}(5)$$

$$\frac{d}{dx}(x^2) - \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = 0$$

$$2x - x\frac{dy}{dx} - y + 2y\frac{dy}{dx} = 0$$

$$(-x+2y)\frac{dy}{dx} = -2x + y$$

$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}$$

$$y' = \frac{y - 2x}{2y - x}$$

$$(2y-x)y'=y-2x$$

$$\frac{d}{dx}((2y-x)y') = \frac{d}{dx}(y-2x)$$

$$(2y-x)\frac{d}{dx}(y') + y'\frac{d}{dx}(2y-x) = \frac{d}{dx}(y) - \frac{d}{dx}(2x)$$

$$y''(2y-x) + y'(2y'-1) = y'-2$$

$$y'' = \frac{2y'-2-2y'^2}{2y-x}$$

After substitution of y',

$$y'' = \frac{2\frac{y-2x}{2y-x} - 2 - 2\left(\frac{y-2x}{2y-x}\right)^2}{2y-x} = -\frac{6(y^2 - xy + x^2)}{(2y-x)^3}$$

Find
$$\frac{dy}{dx}$$
 if $\sin(x+y) = y^2 \cos x$

16.

Solution: Given $\sin(x+y) = y^2 \cos x$

Diff. w.r.to x, we get,

$$\cos(x+y)(1+y') = y^2(-\sin x) + (\cos x)(2yy')$$

$$\cos(x+y) + \cos(x+y)y' = -y^2\sin x + 2yy'\cos x$$

$$\cos(x+y) + y^2 \sin x = (2y\cos x - \cos(x+y))y'$$

$$\therefore y' = \frac{\cos(x+y) + y^2 \sin x}{2y \cos x - \cos(x+y)}$$

17. If $x^4 + y^4 = 16$, find the value of y' and y''.

Solution:
$$x^4 + y^4 = 16$$
 $4x^3 + 4y^3y' = 0 \Rightarrow y' = -\frac{4x^3}{4y^3} = -\frac{x^3}{y^3}$

Differentiating with respect to x

$$y'' = -\left[\frac{y^3(3x^2) - x^3(3y^2y')}{\left(y^3\right)^2}\right] = -\left[\frac{3y^2x^2\left\{y - xy'\right\}}{y^6}\right]$$

$$y' = -\frac{x^3}{y^3} \Rightarrow y'' = -\left[\frac{3y^2x^2\left\{y - x\left[-\frac{x^3}{y^3}\right]\right\}}{y^6}\right] = -\left[\frac{3x^2\left\{\frac{y(y^3) + x(x^3)}{y^3}\right\}\right]}{y^4}$$

$$= -\left[3x^{2}\left\{\frac{y^{4} + x^{4}}{y^{3+4}}\right\}\right] = -\left[3x^{2}\left\{\frac{16}{y^{7}}\right\}\right]$$

$$= -\frac{48x^{2}}{3}$$

$$= -\frac{48x^{2}}{3}$$

18. Find the slope of the tangent line to the curve $3xy - 2x^2 = 7$ at (1, 3). Also compute the second derivative.

Solution.

$$3xy'+3y-4x=0 \Rightarrow y'=\frac{4x-3y}{3x}=\frac{4(1)-3(3)}{3(1)}=-\frac{5}{3}$$

For the second derivative we consider again 3xy'+3y-4x=0

Taking derivative we find
$$3xy'' + 3y' + 3y' - 4 = 0 \Rightarrow y'' = \frac{4 - 6y'}{3x} = \frac{6y - 4x}{3x^2} = \frac{14}{3}$$

Differentiating both sides of $x^3 + y^3 = 6xy$ with respect to x, regarding y as a function of x, and using the

Chain Rule on the term y^3 and the Product Rule on the term 6xy, we get $3x^2 + 3y^2y' = 6xy' + 6y$

Solution:

 $y'(y^2 - 2x) = 2y - x^2$

 $x^2 + y^2$ y'= 2xy'+2y

 $y^2 y' - 2xy' = 2y - x^2$

$$y' = \frac{2y - x^2}{v^2 - 2x}$$

At (3, 3),
$$y' = \frac{2y - x^2}{y^2 - 2x} = \frac{2(3) - 3^2}{3^2 - 2(3)} = -1$$

Slope of the tangent is -1

Equation of the tangent is given by $y - y_1 = m(x - x_1)$

$$\Rightarrow y-3=(-1)(x-3) \Rightarrow y-3=-x+3 \Rightarrow x+y=6$$

The tangent line is horizontal if y'=0

$$\Rightarrow \frac{2y - x^2}{y^2 - 2x} = 0 \Rightarrow 2y - x^2 = 0 \Rightarrow 2y = x^2 \Rightarrow y = \frac{x^2}{2}$$
 provided $y^2 - 2x \neq 0$

$$y = \frac{x^2}{2}$$
 in $x^3 + y^3 = 6xy$

$$\Rightarrow x^{3} + \left(\frac{x^{2}}{2}\right)^{3} = 6x\left(\frac{x^{2}}{2}\right)$$

$$\Rightarrow x^{3} + \frac{x^{6}}{8} = 3x^{3}$$

$$\Rightarrow \frac{8x^{3} + x^{6}}{8} = 3x^{3}$$

$$\Rightarrow 8x^{3} + x^{6} = 24x^{3}$$

$$\Rightarrow 8x^{3} - 24x^{3} = -x^{6}$$

$$\Rightarrow -16x^{3} = -x^{6}$$

$$\Rightarrow x^{6} - 16x^{3} = 0 \Rightarrow x^{3}(x^{3} - 16) = 0 \Rightarrow x = 0, (16)^{\frac{1}{3}} \Rightarrow x = 0, (2^{4})^{\frac{1}{3}} \Rightarrow x = 0, (2)^{\frac{4}{3}}$$

$$y = \frac{x^{2}}{2} = \frac{\left(2^{\frac{4}{3}}\right)^{2}}{2} = \frac{\left(2^{\frac{8}{3}}\right)^{2}}{2} = 2^{\frac{8}{3} - 1} = 2^{\frac{5}{3}}$$

Thus the tangent line is horizontal at $(2^{\frac{4}{3}}, 2^{\frac{3}{3}})$

Maximum and Minimum values of f

The maximum and minimum values of f are called extreme values of f.

Definition:

Let f be defined on [a,b]. f is said to have an absolute maximum (or global maximum) on [a,b] if there is at least one point $c \in [a,b]$ such that $f(x) \le f(c), \forall x \in [a,b]$.

i.e., the largest value of f on [a,b] is called the **absolute maximum**.

Definition:

Let f be defined on [a,b]. f is said to have an absolute minimum (or global minimum) on [a,b] if there is at least one point $c \in [a,b]$ such that $f(x) \ge f(c), \forall x \in [a,b]$.

i.e., the least value of f on [a,b] is called the **absolute minimum**.

Definition:

Let f be the function defined on [a,b] and let $c \in (a,b)$, then

(i). f is said to have a **local maximum** (or relative maximum) at c, if there is a neighbourhood $(c-\delta,c+\delta)$ of c such that $f(x) < f(c), \forall x \in (c-\delta,c+\delta), x \neq c$.

i.e., f(c) is the greatest value in a neighbourhood of c.

(ii). f is said to have a **local minimum** (or relative minimum) at c, if there is a neighbourhood $(c-\delta,c+\delta)$ of c such that $f(x) > f(c), \forall x \in (c-\delta,c+\delta), x \neq c$.

i.e., f(c) is the least value in a neighbourhood of c.

Definition: A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Closed Interval Method:

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a,b].

- 1. Find the values of f at the critical numbers of f in (a,b) (the open interval)
- 2. Find the values of f at the endpoints of the interval, f(a) and f(b).
- 3. The largest value from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

minimum function Find absolute maximum values of the and $f(x) = x^3 - 3x^2 + 1, -\frac{1}{2} \le x \le 4$.

$$f(x) = x^3 - 3x^2 + 1$$
$$f'(x) = 3x^2 - 6x$$

$$f'(x) = 3x^2 - 6x$$

$$f'(x) = 0$$

$$\Rightarrow 3x^2 - 6x = 0$$

$$\Rightarrow 3x(x-2) = 0 \Rightarrow x = 0, 2$$

The critical points are x = 0, 2

$$f(0) = 0^3 - 3(0)^2 + 1 = 1$$

$$f(0) = 0^3 - 3(0)^2 + 1 = 1$$

$$f(2) = 2^3 - 3(2)^2 + 1 = 8 - 12 + 1 = -3$$

Also, at the end points

$$f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right)^2 + 1 = -\frac{1}{8} - 3\left(\frac{1}{4}\right) + 1 = \frac{-1 - 6 + 8}{8} = \frac{1}{8}$$

$$f(4) = 4^3 - 3(4)^2 + 1 = 64 - 48 + 1 = 17$$

The absolute minimum value is f(2) = -3 and it occurs at x = 2,

and the absolute maximum value is f(4) = 17 and it occurs at x = 4.

Find the absolute maximum and absolute minimum values of f(x) on the given interval 2.

$$f(x) = x^3 - 6x^2 + 5, [-3, 5].$$

Solution:

$$f(x) = x^3 - 6x^2 + 5$$

$$f'(x) = 3x^2 - 12x$$

$$f'(x) = 0$$

$$\Rightarrow 3(x^2 - 4x) = 0$$

$$\Rightarrow x(x-4)=0$$

$$\Rightarrow x = 0,4$$

The critical points are x = 0, 4

$$f(0) = 0^3 - 6(0^2) + 5 = 5$$

$$f(0) = 0^{3} - 6(0^{2}) + 5 = 5$$
$$f(4) = 4^{3} - 6(4^{2}) + 5 = -27$$

Also, at the end points

$$f(-3) = (-3)^3 - 6(-3)^2 + 5 = -76$$
$$f(5) = 5^3 - 6(5^2) + 5 = -20$$

$$f(5) = 5^3 - 6(5^2) + 5 = -20$$

Hence, the absolute minimum value is f(-3) = -76 and it occurs at x = -3and the absolute maximum value is f(0) = 5 and it occurs at x = 0.

Find the absolute maximum and absolute minimum values of f(x) on the given interval

$$f(x) = (x^2 - 4)^3, [-2, 3].$$

$$f(x) = (x^2 - 4)^3$$

$$f(x) = (x^{2} - 4)^{3}$$

$$f'(x) = 3(x^{2} - 4)^{2} (2x) = 6x(x^{2} - 4)^{2}$$

$$f'(x) = 0$$

$$\Rightarrow 6x(x^{2} - 4)^{2} = 0$$

$$f'(x) = 0$$

$$\Rightarrow 6x(x^2-4)^2=0$$

$$\Rightarrow x = 0, (x^2 - 4)^2 = 0$$
$$\Rightarrow x^2 - 4 = 0 \Rightarrow x = \pm 2$$

$$\Rightarrow x^2 - 4 = 0 \Rightarrow x = \pm 2$$

The critical points are x = 0, 2, -2

$$f(0) = (0-4)^3 = -64$$

$$f(2) = (2^2 - 4)^3 = 0$$

$$f(0) = (0-4)^{3} = -64$$

$$f(2) = (2^{2}-4)^{3} = 0$$

$$f(-2) = ((-2)^{2}-4)^{3} = 0$$

Also, at the end points

$$f(-2) = ((-2)^{2} - 4)^{3} = 0$$
$$f(3) = (3^{2} - 4)^{3} = 125$$

$$f(3) = (3^2 - 4)^3 = 125$$

The absolute minimum value is f(0) = -64 and it occurs at x = 0and the absolute maximum value is f(3) = 125 and it occurs at x = 3.

Find the absolute maximum and absolute minimum values of f(x) on the given interval

$$f(x) = 2\cos x - \sin 2x, \left[0, \frac{\pi}{2}\right].$$

$$f(x) = 2\cos x - \sin 2x$$

$$f(x) = 2\cos x - \sin 2x$$

$$f'(x) = -2\sin x - 2\cos 2x$$

$$f'(x) = 0$$

$$\Rightarrow -2(\sin x + \cos 2x) = 0$$

$$f'(x) = 0$$

$$\Rightarrow -2(\sin x + \cos 2x) = 0$$

$$\sin x + \cos 2x = 0$$

$$\Rightarrow x = \frac{\pi}{2}$$
 is the critical point

$$f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{\pi}{2}\right) - \sin 2\left(\frac{\pi}{2}\right) = 0$$

Also at the end points

$$f(0) = 2\cos 0 - \sin 0 = 2$$

$$f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{\pi}{2}\right) - \sin 2\left(\frac{\pi}{2}\right) = 0$$

The absolute minimum value is $f\left(\frac{\pi}{2}\right) = 0$ and it occurs at $x = \frac{\pi}{2}$

and the absolute maximum value is f(0) = 2 and it occurs at x = 0.

Find the absolute maximum and absolute minimum values of f(x) on the given interval $f(x) = x - 2\sin x, [0, 2\pi].$

$$f(x) = x - 2\sin x$$

$$f(x) = x - 2\sin x$$
$$f'(x) = 1 - 2\cos x$$

$$f'(x) = 0$$

$$\Rightarrow$$
1-2cos $x = 0$

$$\Rightarrow \cos x = \frac{1}{2}$$

$$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$$
 are the critical point

$$f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - 2\sin\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - 2\frac{\sqrt{3}}{2} = \frac{\pi}{3} - \sqrt{3} = -0.684853$$

$$f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} - 2\sin\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} - 2\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{3} + \sqrt{3} = 6.968039$$

Also at the end points

$$f(0) = 0 - 2\sin 0 = 0$$

$$f(2\pi) = 2\pi - 2\sin(2\pi) = 2\pi - 0 = 6.28$$

The absolute minimum value is $f\left(\frac{\pi}{3}\right) = -0.684853$ and it occurs at $x = \frac{\pi}{3}$

and the absolute maximum value is $f\left(\frac{5\pi}{3}\right) = 6.968039$ and it occurs at $x = \frac{5\pi}{3}$.

Find the absolute maximum and absolute minimum values of f(x) on the given interval

$$f(x) = x - \log x, \left[\frac{1}{2}, 2\right].$$

$$f(x) = x - \log x$$

$$f'(x) = 1 - \frac{1}{x}$$

$$f(x) = x - \log x$$

$$f'(x) = 1 - \frac{1}{x}$$

$$f'(x) = 0 \Rightarrow 1 - \frac{1}{x} = 0$$

$$\Rightarrow \frac{x-1}{x} = 0 \Rightarrow x = 1$$

and also f'(x) does not exist at $\Rightarrow x = 0$

 $\therefore x = 0,1$ are the critical points

But x = 0 does not belong to $\left[\frac{1}{2}, 2\right]$

$$f(1) = 1 - \log 1 = 1 - 0 = 1$$

Also, at the end points

$$f\left(\frac{1}{2}\right) = \frac{1}{2} - \log\frac{1}{2} = 0.5 - (-0.6931) = 1.1931$$

$$f(2) = 2 - \log 2 = 2 - 0.6931 = 1.3068$$

The absolute minimum value is f(1)=1 and it occurs at x=1

and the absolute maximum value is f(2) = 1.3068 and it occurs at x = 2.

7. Find the absolute maximum and minimum values for $f(t) = t\sqrt{4-t^2}$ in the interval [-1,2].

$$f(t) = t\sqrt{4 - t^2}$$

$$f'(t) = \sqrt{4-t^2}(1) + t\left(\frac{1}{2}\right)(4-t^2)^{\frac{1}{2}-1}(-2t)$$

$$= \sqrt{4 - t^2} - t^2 \left(4 - t^2\right)^{-\frac{1}{2}}$$

$$= \sqrt{4-t^2} - t^2 (4-t^2)^{-\frac{1}{2}}$$

$$= \sqrt{4 - t^2} - \frac{t^2}{\sqrt{4 - t^2}}$$

$$=\frac{4-t^2-t^2}{\sqrt{4-t^2}}$$

$$f'(t) = \frac{4 - 2t^2}{\sqrt{4 - t^2}}$$

To find the critical points Put $f'(t) = 0 \Rightarrow \frac{4 - 2t^2}{\sqrt{4 - t^2}} = 0$

$$\Rightarrow 4 - 2t^2 = 0 \Rightarrow t^2 = 2 \Rightarrow t = \pm \sqrt{2}$$

and also f'(t) does not exist at $4-t^2=0 \Rightarrow t^2=4 \Rightarrow t=\pm 2$

$$t = 2, -2, \sqrt{2}, -\sqrt{2}$$
 are the critical points

But $t = -2, -\sqrt{2}$ does not belong to [-1, 2]

$$f(2) = (2)\sqrt{4-(2)^2} = 0$$

$$f\left(\sqrt{2}\right) = \left(\sqrt{2}\right)\sqrt{4 - \left(\sqrt{2}\right)^2} = 2$$

Also, at the end points

$$f(-1) = (-1)\sqrt{4 - (-1)^2} = -\sqrt{3}$$

The absolute maximum value is $f(\sqrt{2}) = 2$ and it occurs at $t = \sqrt{2}$

The absolute minimum value is $f(-1) = -\sqrt{3}$ and it occurs at t = -1.

Increasing/Decreasing Test:

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

Definition:

If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I.

If the graph of *f* lies below all of its tangents on an interval *I*, then it is called concave downward on *I*.

Concavity Test:

Suppose that a function f is differentiable on an open interval containing c and that f''(c) exists. Then

- 1. If f''(c) > 0, then the graph of f is concave upward at the point P(c, f(c)).
- 2. If f''(c) < 0, then the graph of f is concave downward at the point P(c, f(c)).

Definition: Inflection Point (Point of Inflection or Flex Point):

A point P on a curve y = f(x) is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

(i.e) A point P on a curve y = f(x) is called an inflection point if f is continuous there and if the concavity of the curve changes there (from upward to downward, or from downward to upward).

Note:

- 1. The possible points for inflection points are points where either f'' = 0 or f'' is undefined.
- 2. However, just like that not every critical point is a local max / min, not every such point is an inflection point either.
- 3. They are just the pool of points you need to check in order to find the inflection point(s) of a curve.
- 4. It often happens that a graph has different concavity on the two sides of a vertical asymptote.
- 5. However, because a curve is not continuous at a vertical asymptote, it can never have an inflection point there, even if f is defined there.

The First Derivative Test:

Suppose that c is a critical number of a continuous function f.

- (a). If f' changes from positive to negative at c, then f has a local maximum at c.
- (b). If f' changes from negative to positive at c, then f has a local minimum at c.
- (c). If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

The Second Derivative Test:

Suppose f''(c) is continuous near c. If f is differentiable on an open interval containing c, then

- 1. If f'(c) = 0 and f''(c) < 0, then f has local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has local minimum at x = c.

For the function $f(x) = 2x^3 - 3x^2 - 12x$ find the maximum and minimum of f(x). Also find the intervals on which f(x) is increasing and decreasing.

Solution:

Domain of the function $f(x) = 2x^3 - 3x^2 - 12x$ is $(-\infty, \infty)$

$$f'(x) = 6x^2 - 6x - 12$$

$$f''(x) = 12x - 6$$

To find critical points,

$$f'(x) = 0 \Rightarrow 6x^2 - 6x - 12 = 0$$
$$\Rightarrow x^2 - x - 2 = 0$$
$$\Rightarrow (x - 2)(x + 1) = 0$$

$$\Rightarrow x^2 - x - 2 = 0$$

$$\Rightarrow (x-2)(x+1) = 0$$

 \Rightarrow x = -1,2 are the critical points

By First Derivative Test:

Interval	$f'(x) = 6x^2 - 6x - 12$	$f(x) = 2x^3 - 3x^2 - 12x$	Conclusion		
$-\infty < x < -1$	Positive	Increasing on $(-\infty, -1)$	f'(x) changes positive to		
			negative at $x = -1$		
			⇒ Local maximum at		
-1 < x < 2	Negative	Decreasing on $(-1,2)$	x = -1		
			f'(x) changes negative to		
			positive at $x = 2$		
$2 < x < \infty$	Positive	Increasing on $(2,\infty)$	\Rightarrow Local maximum at		
		(=,)	x = 2		

Local Maximum Value is = $f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) = -2 - 3 + 12 = 7$

Local Minimum Value is $= f(2) = 2(2)^3 - 3(2)^2 - 12(2) = 16 - 12 - 24 = -20$.

Find the maximum and minimum values of $f(x) = \frac{x^2 + x + 1}{x^2 + x + 1}$. 9.

Solution:

Solution:

$$f(x) = \frac{x^2 + x + 1}{x^2 - x + 1}$$

$$f'(x) = \frac{(x^2 - x + 1)(2x + 1) - (x^2 + x + 1)(2x - 1)}{(x^2 - x + 1)^2}$$

$$= \frac{(2x^3 - 2x^2 + 2x + x^2 - x + 1) - (2x^3 + 2x^2 + 2x - x^2 - x - 1)}{(x^2 - x + 1)^2}$$

$$= \frac{(-x^2 + 1) - (x^2 - 1)}{(x^2 - x + 1)^2} = \frac{-2x^2 + 2}{(x^2 - x + 1)^2} = \frac{2(1 - x^2)}{(x^2 - x + 1)^2}$$

$$f''(x) = \frac{(x^2 - x + 1)^2(2(0 - 2x)) - 2(1 - x^2)2(x^2 - x + 1)(2x - 1)}{(x^2 - x + 1)^4}$$

$$f''(x) = \frac{\left(x^2 - x + 1\right)\left[\left(-4x\right)\left(x^2 - x + 1\right) - 4\left(1 - x^2\right)\left(2x - 1\right)\right]}{\left(x^2 - x + 1\right)^4}$$

$$= \frac{\left[-4x^3 + 4x^2 - 4x - 4\left(2x - 2x^3 - 1 + x^2\right)\right]}{\left(x^2 - x + 1\right)^3}$$

$$= \frac{\left[-4x^3 + 4x^2 - 4x - 8x + 8x^3 + 4 - 4x^2\right]}{\left(x^2 - x + 1\right)^3} = \frac{\left[4x^3 - 12x + 4\right]}{\left(x^2 - x + 1\right)^3}$$

To find the critical points
$$f'(x) = 0 \Rightarrow \frac{2(1-x^2)}{\left(x^2 - x + 1\right)^2} = 0 \Rightarrow 2(1-x^2) = 0 \Rightarrow x = \pm 1$$

And also f'(x) is not defined when the denominator is 0 (i.e) $(x^2 - x + 1)^2 = 0 \Rightarrow x^2 - x + 1 = 0$

By applying the formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(1)}}{2(1)} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm i\sqrt{3}}{2}$$

Which are complex numbers

Therefore $x = \pm 1$ are the critical points

By Second derivative test

$$f''(1) = \frac{\left[4(1)^3 - 12(1) + 4\right]}{\left((1)^2 - (1) + 1\right)^3} = -4 < 0$$

 \Rightarrow Local maximum attains at x = 1

$$f''(-1) = \frac{\left[4(-1)^3 - 12(-1) + 4\right]}{\left((-1)^2 - (-1) + 1\right)^3} = \frac{\left[-4 + 12 + 4\right]}{\left(1 + 1 + 1\right)^3} = \frac{12}{27} > 0$$

 \Rightarrow Local minimum attains at x = -1

Local Maximum Value is
$$f(1) = \frac{(1)^2 + (1) + 1}{(1)^2 - (1) + 1} = 3$$

Local Minimum Value is
$$f(-1) = \frac{(-1)^2 + (-1) + 1}{(-1)^2 - (-1) + 1} = \frac{1}{3}$$
.

Find the minimum and maximum value of $f(x) = x^2 - 2x - 5$ in the interval [0,5]. 10.

Solution:

$$f(x) = x^2 - 2x - 5$$
$$f'(x) = 2x - 2$$

$$f'(x) = 2x - 2$$

$$f'(x) = 0 \Rightarrow 2x - 2 = 0 \Rightarrow x = 1$$

 \Rightarrow x = 1 is the critical point

$$f(1) = (1)^2 - 2(1) - 5 = -6$$

Also, at the end points

$$f(0) = (0)^{2} - 2(0) - 5 = -5$$
$$f(5) = (5)^{2} - 2(5) - 5 = 10$$

$$f(5) = (5)^2 - 2(5) - 5 = 10$$

Hence, the minimum value is f(1) = -6 occurs at x = 1, and the maximum value is f(5) = 10occurs at x = 5.

Solution:

$$f(x) = x + 2\sin x$$
$$f'(x) = 1 + 2\cos x$$

$$f'(x) = 1 + 2\cos x$$

To find the critical points

Put
$$f'(x) = 0$$

 $\Rightarrow 1 + 2\cos x = 0$

$$\Rightarrow$$
 1+2cos $x = 0$

$$\Rightarrow \cos x = -\frac{1}{2}$$

$$x = \frac{2\pi}{3}$$
 and $x = \frac{4\pi}{3}$

By First Derivative test:

Interval	$f'(x) = 1 + 2\cos x$	$f(x) = x + 2\sin x$	Conclusion		
2 –		Increasing on	f'(x) changes from positive		
$0 < x < \frac{2\pi}{3}$	Positive	$\left(0,\frac{2\pi}{3}\right)$	to negative at $\frac{2\pi}{3}$.		
2π 4π		Decreasing on	\Rightarrow Local maximum at $x = \frac{2\pi}{3}$		
$\frac{2\pi}{3} < x < \frac{4\pi}{3}$	Negative	$\left(\frac{2\pi}{3},\frac{4\pi}{3}\right)$	3		
		(3 3)	f'(x) changes from negative		
$\Lambda \pi$		Increasing on	to positive at $\frac{4\pi}{3}$.		
$\frac{4\pi}{3} < x < 2\pi$	Positive	$\left(\frac{4\pi}{3},2\pi\right)$	$\Rightarrow \text{Local minimum at } x = \frac{4\pi}{3}$		

Local maximum Value is
$$= f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + 2\sin\frac{2\pi}{3} = \frac{2\pi}{3} + 2\frac{\sqrt{3}}{2} = \frac{2\pi}{3} + \sqrt{3} \approx 3.83$$

Local Minimum Value is
$$= f\left(\frac{4\pi}{3}\right) = \frac{4\pi}{3} + 2\sin\frac{4\pi}{3} = \frac{4\pi}{3} + 2\left(-\frac{\sqrt{3}}{2}\right) = \frac{4\pi}{3} - \sqrt{3} \approx 2.46$$

12. Find the local maximum and minimum values of the function $f(x) = \sqrt{x} - \sqrt[4]{x}$ using both the first and second derivative tests.

Solution:

Domain of the function $f(x) = \sqrt{x} - \sqrt[4]{x}$ is $(0, \infty)$

$$f(x) = x^{\frac{1}{2}} - x^{\frac{1}{4}}$$

$$f'(x) = \frac{1}{2}x^{\left(\frac{1}{2}\right)-1} - \frac{1}{4}x^{\left(\frac{1}{4}\right)-1} = \frac{1}{2}x^{-\left(\frac{1}{2}\right)} - \frac{1}{4}x^{-\left(\frac{3}{4}\right)}$$

$$= \frac{1}{2x^{\left(\frac{1}{2}\right)}} - \frac{1}{4x^{\left(\frac{3}{4}\right)}} = \frac{1}{2x^{\left(\frac{1}{2}\right)}} \left(1 - \frac{1}{2x^{\left(\frac{3}{4}\right) - \left(\frac{1}{2}\right)}}\right) = \frac{1}{2x^{\left(\frac{1}{2}\right)}} \left(1 - \frac{1}{2x^{\left(\frac{1}{4}\right)}}\right)$$

$$= \frac{1}{2x^{\left(\frac{1}{2}\right)}} \left(\frac{2x^{\left(\frac{1}{4}\right)} - 1}{2x^{\left(\frac{1}{4}\right)}} \right) = \frac{2x^{\left(\frac{1}{4}\right)} - 1}{4x^{\left(\frac{3}{4}\right)}} = \frac{2\sqrt[4]{x} - 1}{4\sqrt[4]{x^3}}$$

To find the critical points

$$f'(x) = 0, \frac{2\sqrt[4]{x} - 1}{4\sqrt[4]{x^3}} = 0$$

$$\Rightarrow 2\sqrt[4]{x} - 1 = 0$$

$$\Rightarrow \sqrt[4]{x} = \frac{1}{2}$$

$$\Rightarrow x = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

$$\Rightarrow 2\sqrt[4]{x} - 1 = 0$$

$$\Rightarrow \sqrt[4]{x} = \frac{1}{2}$$

$$\Rightarrow x = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

and also f'(x) does not exist at x = 0

Therefore, the critical points are $x = \frac{1}{16} \& x = 0$

By First Derivative Test:

Interval	$f'(x) = \frac{2\sqrt[4]{x} - 1}{4\sqrt[4]{x^3}}$	$f(x) = \sqrt{x} - \sqrt[4]{x}$	Conclusion
$0 < x < \frac{1}{16}$	Negative	Decreasing on $\left(0, \frac{1}{16}\right)$	$f'(x)$ changes from negative to positive at $\frac{1}{16}$.
$\frac{1}{16} < x < \infty$	Positive	Increasing on $\left(\frac{1}{16}, \infty\right)$	$\Rightarrow \text{Local minimum at } x = \frac{1}{16}$

Local Minimum Value is
$$= f\left(\frac{1}{16}\right) = \sqrt{\frac{1}{16}} - \sqrt[4]{\frac{1}{16}} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$$
.

By Second Derivative test:

$$f''(x) = \frac{d}{dx} \left(f'(x) \right) = \frac{d}{dx} \left[\frac{1}{2} x^{-\left(\frac{1}{2}\right)} - \frac{1}{4} x^{-\left(\frac{3}{4}\right)} \right]$$

$$= -\frac{1}{2} \frac{1}{2} x^{-\left(\frac{1}{2}\right)-1} + \frac{1}{4} \frac{3}{4} x^{-\left(\frac{3}{4}\right)-1}$$

$$= \frac{1}{4}x^{-\left(\frac{3}{2}\right)} + \frac{3}{16}x^{-\left(\frac{7}{4}\right)}$$

$$f''(0) = \frac{1}{4}(0)^{-\left(\frac{3}{2}\right)} + \frac{3}{16}(0)^{-\left(\frac{7}{4}\right)} = 0$$

 $\Rightarrow x = 0$ is neither local maximum or local minimum

 $\Rightarrow x = 0$ is the inflection point.

$$f''\left(\frac{1}{16}\right) = \frac{1}{4}\left(\frac{1}{16}\right)^{-\left(\frac{3}{2}\right)} + \frac{3}{16}\left(\frac{1}{16}\right)^{-\left(\frac{7}{4}\right)} = \frac{1}{4}\left(\frac{16}{1}\right)^{\left(\frac{3}{2}\right)} + \frac{3}{16}\left(\frac{16}{1}\right)^{\left(\frac{7}{4}\right)}$$
$$= \frac{1}{4}\left[\left(16\right)^{\left(\frac{1}{2}\right)}\right]^{3} + \frac{3}{16}\left[\left(16\right)^{\left(\frac{1}{4}\right)}\right]^{7} = \frac{1}{4}\left[4\right]^{3} + \frac{3}{16}\left[2\right]^{7} > 0$$

 \Rightarrow Local minimum attains at $x = \frac{1}{16}$

Local Minimum Value is
$$= f\left(\frac{1}{16}\right) = \sqrt{\frac{1}{16}} - \sqrt[4]{\frac{1}{16}} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$$
.

If $f(x) = 2x^3 + 3x^2 - 36x$ find the intervals on which is increasing or decreasing, the local maxima and minima, the intervals of concavity and the points of inflection?

Solution:

13.

Domain of the function $f(x) = 2x^3 + 3x^2 - 36x$ is $(-\infty, \infty)$

$$f'(x) = 6x^2 + 6x - 36$$
$$f''(x) = 12x + 6$$

$$f''(x) = 12x + 6$$

To find critical points $f'(x) = 0 \Rightarrow 6x^2 + 6x - 36 = 0$

$$\Rightarrow$$
 6(x+3)(x-2)=0

x = -3,2 are the critical points

By First derivative test

Interval	$f'(x) = 6x^2 + 6x - 36$	$f(x) = 2x^3 + 3x^2 - 36x$	Conclusion
$-\infty < x < -3$	Positive	Increasing on $(-\infty, -3)$	f'(x) changes from
			positive to negative at
			x = -3
	Negative		⇒Local maximum at
-3 < x < 2		Decreasing on $(-3,2)$	x = -3
			f'(x) changes from
			negative to positive at
			x = 2
$2 < x < \infty$	Positive	Increasing on $(2, \infty)$	⇒Local minimum at
			x = 2

Local maximum value is $f(-3) = 2(-3)^3 + 3(-3)^2 - 36(-3) = 81$

Local minimum value is $f(2) = 2(2)^3 + 3(2)^2 - 36(2) = -44$

Concavity Test:

To find inflection points, $f''(x) = 0 \Rightarrow 12x + 6 = 0$

$$\Rightarrow x = -\frac{1}{2}$$
 is the inflection points

Interval	f''(x) = 12x + 6	$f(x) = 2x^3 + 3x^2 - 36x$
$-\infty < x < -\frac{1}{2}$	Negative	Concave downward on $\left(-\infty, -\frac{1}{2}\right)$
$-\frac{1}{2} < x < \infty$	Positive	Concave upward on $\left(-\frac{1}{2},\infty\right)$

Since the curve changes from concave downward to upward at $x = -\frac{1}{2}$.

Thus the point of inflection is $\left(-\frac{1}{2}, f\left(-\frac{1}{2}\right)\right)$

$$f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 - 36\left(-\frac{1}{2}\right)$$
$$= 2\left(-\frac{1}{8}\right) + 3\left(\frac{1}{4}\right) + 18$$
$$= -\frac{1}{4} + \frac{3}{4} + 18$$
$$f\left(-\frac{1}{2}\right) = \frac{37}{2}$$

$$\therefore$$
 The Point of Inflection is $\left(-\frac{1}{2}, \frac{37}{2}\right)$

Given $f(x) = x^3 - 12x + 2$, (i). Find the intervals of increase or decrease, (ii). Find the local 14. maximum and minimum values, (iii). Find the intervals of concavity and the inflection points.

Solution:

Domain of the function $f(x) = x^3 - 12x + 2$ is $(-\infty, \infty)$

$$f'(x) = 3x^2 - 12$$
$$f''(x) = 6x$$

$$f''(x) = 6x$$

To find critical points $f'(x) = 0 \Rightarrow 3x^2 - 12 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$

 \Rightarrow x = 2, -2 are the critical points.

By First Derivative Test:

Interval	$f'(x) = 3x^2 - 12$	$f(x) = x^3 - 12x + 2$	Conclusion		
m < r < 2	Positivo	Increasing on	f'(x) changes from positive to		
$-\infty < x < -2$	TOSITIVE	$(-\infty, -2)$	negative at $x = -2$		
-2 < x < 2	Negative	Decreasing on $(-2,2)$	\Rightarrow Local maximum at $x = -2$		
			f'(x) changes from negative to		
$2 < x < \infty$	Positive	Increasing on $(2, \infty)$	positive at $x = 2$		
			\Rightarrow Local minimum at $x = 2$		

Local Maximum Value is = $f(-2) = (-2)^3 - 12(-2) + 2 = -8 + 24 + 2 = 18$

Local Minimum Value is $= f(2) = (2)^3 - 12(2) + 2 = 8 - 24 + 2 = -14$

Concavity test:

To find inflection points, $f''(x) = 0 \Rightarrow 6x = 0 \Rightarrow x = 0$

 $\Rightarrow x = 0$ is the inflection points

Interval	f''(x) = 6x	$f\left(x\right) = x^3 - 12x + 2$
$-\infty < x < 0$	Negative	Concave downward on $(-\infty, 0)$
$0 < x < \infty$	Positive	Concave upward on $(0,\infty)$

Since the curve changes from concave downward to upward at x = 0

Thus the point of inflection is (0, f(0))

$$f(0) = 0^3 - 12.0 + 2 = 2$$

 \therefore The Point of Inflection is (0,2).

Discuss the curve $y = x^4 - 4x^3$ with respect to concavity, points of inflection, and local 15. maxima and minima. Use this information to sketch the curve.

Solution:

Domain of the function $y = f(x) = x^4 - 4x^3$ is $(-\infty, \infty)$

$$f'(x) = 4x^3 - 12x^2$$
$$f''(x) = 12x^2 - 24x$$

$$f''(x) = 12x^2 - 24x$$

To find critical points, f'(x) = 0

$$\Rightarrow 4x^3 - 12x^2 = 0$$

$$\Rightarrow 4x^2(x-3) = 0$$

 \Rightarrow x = 0,3 are the critical points

By second derivative test

$$f''(0) = 12(0)^2 - 24(0) = 0$$

 \Rightarrow x = 0 is neither local maximum or local minimum

 $\Rightarrow x = 0$ is the inflection point.

$$f''(3) = 12(3)^2 - 24(3) = 36 > 0$$

 \Rightarrow Local minimum attains at x = 3

Local Minimum value is $f(3) = 3^4 - 4(3^3) = 81 - 108 = -27$

Concavity Test:

To find inflection points, f''(x) = 0

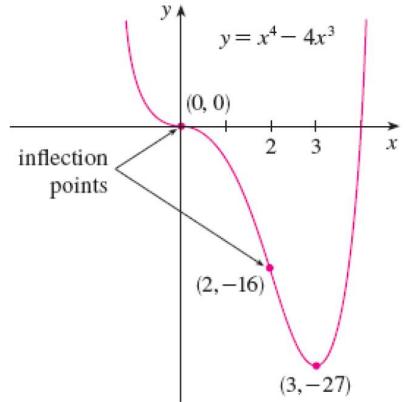
$$\Rightarrow 12x^2 - 24x = 0$$

$$\Rightarrow 12x(x-2) = 0$$

 \Rightarrow x = 0, 2 are the inflection points

Interval	$y'' = 12x^2 - 24x = 12x(x-2)$	$y = x^4 - 4x^3$
$-\infty < x < 0$	Positive	Concave upward on $(-\infty,0)$
0 < x < 2	Negative	Concave downward on (0, 2)
$2 < x < \infty$	Positive	Concave upward on $(2, \infty)$

Graph



16. APPLICATIONS OF DERIVATIVES

Problem.16 Find the dimensions of a circular cylinder whose volume is 9 m³ but which uses the least amount of material.

Solution:

The total surface area, A of the cylinder is

A = top surface + side surface + bottom surface

$$=\pi r^2 + 2\pi r h + \pi r^2$$

$$=2\pi r^2+2\pi rh$$

The volume, V of the cylinder is $V = \pi r^2 h$ since $V = 9 m^3$

We can write
$$9 = \pi r^2 h \Rightarrow h = \frac{9}{\pi r^2}$$

This gives the surface area just in terms of r as

$$A = 2\pi r^2 + 2\pi r \left(\frac{9}{\pi r^2}\right) = 2\pi r^2 + \frac{18}{r} = 2\pi r^2 + 18r^{-1}$$

To find the minimum, take the first derivative of A with respect to r as

$$\frac{dA}{dr} = 4\pi r + 18(-1)r^{-2} = 4\pi r - \frac{18}{r^2}$$

Solving for
$$\frac{dA}{dr} = 0$$

$$4\pi r - \frac{18}{r^2} = 0 \Longrightarrow 4\pi r^3 - 18 = 0$$

$$r^3 = \frac{18}{4\pi}$$

$$r = \left(\frac{18}{4\pi}\right)^{\frac{1}{3}} = 1.12725 \,\mathrm{m}$$

Since
$$h = \frac{9}{\pi r^2}$$
, $\Rightarrow h = \frac{9}{\pi (1.12725)^2} = 2.2545$ m

$$\frac{d^2A}{dr^2} = 4\pi - 18(-2)r^{-3} = 4\pi + \frac{36}{r^3}$$

$$\left[\frac{d^2A}{dr^2}\right]_{r=1.12725} = 4\pi + \frac{36}{1.12725} = 44.5025$$

This value
$$\frac{d^2A}{dr^2} > 0$$
 for $r = 1.12725 m$

As per the second derivative test, r = 1.12725 m corresponds to a minimum.

MA 8151 - ENGINEERING MATHEMATICS-I

UNIT-I

Differential Calculus.

1.1 Representation of functions:

Function:

A bunction f from a set D to a set E is a rule that assigns a uneque element $f(x) \in E$ to each element $x \in D$.

The set D of all possible input values is Called the domain of the function.

The range of f is the set of all possible values of f(x) as x varies throughout the domain.

Real -valued functions:

A function whose domain and Co-domain are subsets of the set of all real numbers is known as real-valued function. Explicit functions:

If x and y be so related that y (and be expressed explicity interms x, then y is called explicit function of x.

Ex: $y = x^2 - 4x + 2$.

Implicit bunctions:

Id x and y be so related that. y cannot be expressed explicitly in terms of x, then y is called implicit bunction of x. Eg: x8+y3-3xy=0.

Domain, co-domain, range and image;

Let $f: A \rightarrow B$ then

set A is called the domain of the function

set B is Called Co-domain

The set of all the images of all the elements of A under the function f is called the range co f and is denoted by flA).

The range of fis fla) = \flat flx): x \text{A} \frac{1}{3}

Clearly flA) SB.

If $x \in A$, $y \in B$ and y = f(x), then y is called

the image of & under f.

Graph of functions:

It f is a function with domain D, then its graph is the set of ordered pairs \$(x, f(x)) /x ED 4.

Piece wise - defined functions:

The bunctions are described by using different formula's on different parts of its domain, such bunctions are called Piece wise-d.f.

0

of a function of n ibb no vertical line intersects the Curve Mose than once.

Even function and odd function:

If a function y = f(x) is an even function of x if f(-x) = f(x) and odd function of x if f(-x) = -f(x) for every number x in its domain.

Problem based on the domain and range and sketch the graph of the bunction:

1. Find the domain and range and Sketch the graph of the function $f(x)=x^2$

Solution: Given: $f(x) = x^2$ => $y = x^2$

-	=>	Giv	en	equal	tion	13 4	e par	abda.	Doma	2n
	Domain(x)	-00		-2	-1	0	1	2		00
	Range (y)	00		4	1 .	0	1	4		00
Here $x, y \in \mathbb{R}$. Range $(-2, 4)$ $(-2, 4)$ $(-2, 4)$ $(-2, 4)$										
So the domain of f is the set of all real numbers R . ie, $(-\infty, \infty)$. The graph of the range $15[0,\infty)^{-3-2-1}$										

2. Find the domain and Sketch the graph of the function
$$f(x) = \int x + 2 ib \times 20$$

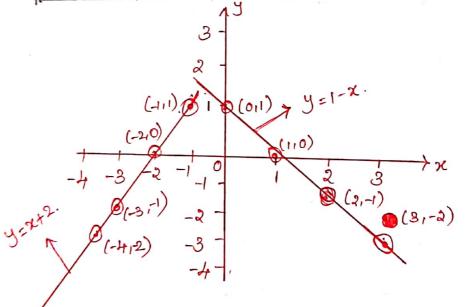
function
$$f(x) = \begin{cases} x+2 & \text{if } x \ge 0 \\ 1-x & \text{if } x > 0 \end{cases}$$

Solution:

Given: $f(x) = \begin{cases} x+2 & \text{if } x \ge 0 \\ 1-x & \text{if } x > 0 \end{cases}$

220	-1	– 2	-3	-4	
y=x+2	1	0	-1	- 2	

x>o	0	1	ર	3	. , ,
Y=1-x	. 1	0	-1	-2	



:. The domain 15 (-0,00).

3. Find the domain and the range of each function
$$f(x) = \frac{4}{3-x}$$
.

Solution: Given: $f(x) = \frac{4}{3-x}$ $\Rightarrow y = \frac{4}{3-x} \quad (\text{divisor by zero is not allowed})$

	1111	11-1-	1111	111	1111	11111	1111	-	111111	Hold	1-1-1	1111
Domain -00	``,	-2	-1	0	,	2		3		4	.,,	∞
Range 0		4/5	1	4/3	2	4	a	い・カ	-a0	-4	-	0

Here $\chi, y \in \mathbb{R}$, $N \cdot D \rightarrow Not$ defined. 50, the domain is $(-\infty, 3) \cup (3, \infty)$ and the range is $(-\infty, 0) \cup (0, \infty)$.

• 7. Find the domain of the function $f(x) = \frac{x+4}{x^2-9}$.

Solution: Given:
$$f(x) = \frac{\chi + 4}{\chi^2 - 9}$$

$$\Rightarrow y = \frac{\chi + 4}{\chi^2 - 9}$$

 $\Rightarrow \chi^2 - 9 = 0 \Rightarrow \chi = \pm 3.$

50 the domain is (-0,-3) U(-3,3) U(3,00).

• 5. Find the domain of the function $f(x) = \sqrt{x+x}$.

Solution: Given:
$$f(x) = \sqrt{x+2}$$

 $\Rightarrow y = \sqrt{x+2}$.

x+2 > 0 [: square noot 03 a negative number 95 not defined]

x>-2.

30 the domain ;3 [-2, ∞).

```
Even function: f(-x) = f(x)
   odd function: f(-x) = -f(x).
   Determine whether each of the function is even.
   odd or reither even nor odd.
   f(x) = x^2 + 1
1,
           Given: f(x) = x^2 + 1
                f(-x) = (-x)^2 + 1
                      = \chi^2 + 1
                 f(-x) = f(x)
         i. f(x) is an even function.
   f(x) = x \cos x.
2
            Given: fix) = x 68x
                  f(-x) = (-x) \cos(-x)
                         = -x 608x
                   f(-x) = -f(x)
       :. fix) is an odd function.
3. | f(x) = x+1
           Given: fix) = x+1
                  f(-x) = -x+1
                   f(-x) \neq f(x)
                   f(-x) = -(x-1)
                   f(-x) \neq -f(x)
        :. fix) is neither even nor odd function.
```

Evaluate the difference operation for the given function. 1. $f(x) = 4 + 3x - x^2$, f(3+h)-f(3)

1.
$$f(x) = 4 + 3x - x^2, \quad \frac{f(3+h) - f(3)}{h}$$

Solution: Griven:
$$f(x) = 4 + 3x - x^2$$

$$f(3+h) = 4 + 3(3+h) - (3+h)^2 = 4 + 9 + 3h - (9 + h^2 + 6h)$$

$$= -h^2 - 3h + 4$$

$$f(3) = 4 + 3(8) - (8)^2 = 4 + 9 - 9 = 4$$

$$\frac{f(3+h) - f(3)}{h} = -\frac{h^2 - 3h + 4 - 4}{h} = -\frac{h^2 - 3h}{h} = -3 - h.$$

1.
$$f(x) = x^3$$
, $f(a+h) - f(a)$ Ans: $h^3 + 3ah + 3a^2$

2.
$$f(x) = 2x^2 - 5x + 1$$
, $\frac{f(a+h) - f(a)}{h}$, $h \neq 0$.

5.
$$f(x) = 3x^2 - x + 2$$
, find $f(9)$, $f(-9)$, $f(9)$, $f(9)$ and $f(9)$, f

4.
$$f(x) = 1 - x^{4}$$
, $f(x) = x^{5} + x$, Check it even or cold.

5. Sketch the graph and bind the domain and range of the function
$$f(x) = 2x-1$$
.

6. Find the domain of the function
$$f(x) = \frac{1}{x^2 - x}$$
.

$$x^{2}-x=0$$
.
 $x(x-1)=0$
 $x=0, X=1$
 $(-0,0)(0,1)(1,0)$

Definition:

 $\lim_{x\to a} f(x) = L \quad \text{ibb} \quad \lim_{x\to a} f(x) = L \quad \text{β $ \lim_{x\to a} f(x) = L$.}$

Infinite Linuits:

Let I be a function defined on both sides of a , except possibly at a itself. Then him f(x) = a mean that f(x) can be arbitrarily large by taking x sufficiently abse to a, but not equal to a.

Definition:

The line x = a is called a vertical asymptote of the curve fix) if at least one of the bollowing statements is true:

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = -\infty \quad \lim_{x \to a} f(x) = -\infty.$$

Determine the infinite limit:

Lim
$$\frac{2-x}{(x-1)^2}$$

$$= \frac{2-1}{(1-1)^2} = \frac{1}{0}$$

$$\frac{2-x}{(x-1)^2} = 0$$

$$\frac{2-x}{(x-1)^2} = 0$$

NOTE: 2. $\lim_{x \to -5^+} \left(\frac{x+2}{x+5} \right)$ D they then do 2) -M -VE =00 3) +ve, -ve = -0 4) -ve, +ve = -00 Solution: Given: $\lim_{x \to -3} \left(\frac{x+2}{x+3} \right)$ 5) +VR = 10 6) -VP = -00. x -> -3" => x is close to -3" but larger than -3. NY = X+2 becomes regative Let X = - 2.9 Dx = x+3 becomes positive Nr = (-2.9+2 =-0.9=-12) DA=(-2.9+3=0.1=+ve) $\therefore \lim_{x \to -3} \frac{x+2}{x+3} = -\infty.$ Line x cosecx. Solution: Given: $\lim_{x \to (2\pi)} x \cos x = \lim_{x \to (2\pi)} \frac{x}{\sin x}$ x + (211) => x is close to 211 but smaller than 211 Nr = 2 becomes positive Dr = Sinx becomes regative [: sin290 = -ve] .. Lim x losec $x = -\infty$. 4. Line log (x=9) Given: Lim log (x=9) x+8 + x is close to 3 but larger than 3 log (x=9) becomes regative [: log[s.1)=9]=-ve] : Lim by (x2-9) = -0. 5. $\lim_{x \to 0^+} \left(\frac{1}{x} - \log x \right) = 0$ 6. $\lim_{x \to -3} \left(\frac{x+2}{x+3} \right) = \infty$

7. Sketch the graph of the banction
$$f(x) = \begin{cases} 1+x, & x \ge -1 \\ x^2, & -1 \le x \le 1 \end{cases}$$

[Jan : 2018. 2017]

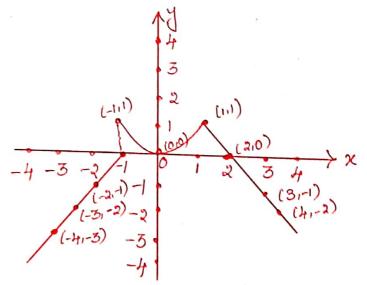
and use it to determine the values of a for which

Line fex) exists.

Solution:

	2	
1726	X	2-X.
-00		00
-	0	1

THE PERSON NAMED IN		1+2	Σ; χ.	2-1	x) j -14	x <)	ನಿ -	χ^2, χ	١ خ		
March Transcourse	χ	-2	-3	-4	-1	0	١	magaarin oliva 200 algang a said	2	3	4	100
STATE OF STREET	fix)	-1	-2	-3	1	0)	1	0	-1	-2	-



$$f(-1) = \lim_{x \to -1} f(x) = \lim_{x \to -1} (1+x) = 1-1 = 0$$

$$x \to -1 \qquad x \to -1$$

$$f(-1) = \lim_{x \to -1} f(x) = \lim_{x \to -1} x^{2} = (-1)^{2} = 1$$

$$f(-1)^{+} = \lim_{x \to -1} f(x) = \lim_{x \to -1^{+}} x^{2} = (-1)^{2} = 1$$

$$x \to -1^{+} \qquad x \to -1^{+}$$
Here, $f(-1) \neq f(-1) = f(-1^{+})$

$$f(-1) \neq f(-1) = f(-1^{+})$$

$$f(-1) \neq f(-1) = f(-1^{+})$$

$$f(-1) \neq f(-1) = f(-1^{+})$$

At x=1 $f(i^{-}) = \lim_{x \to i^{-}} f(x) = \lim_{x \to i^{-}} \chi^{2} = (i)^{2} = 1$ $f(1) = \lim_{x \to 1} f(x) = \lim_{x \to 1} x^2 = (1)^3 = 1.$ $f(1^{+}) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2-x) = 2-1 = 1.$ Here, $f(\bar{i}) = f(i^{\dagger}) = f(i^{\dagger})$: \therefore f is continuous at x=1. Hence, Line fix) existing for all a except at a=-1. 510x 0 112 110 Hw. 8. Sketch the graph of the function $f(x) = \begin{cases} 1+\sin x, & x \ge 0 \\ \cos x, & 0 \le x \le 1 \end{cases}$ which line f(x) exists. HSinx. LOSX SINX. Sin0=0 Elininating Zero Denominators Algebraically COS 0 = 1 Ib the denoncerator 95 zero, Cancelling Common factors in the numerator and denoncenator May reduce the fraction to one whose denominator is no longer xero at c. 1. Find $\lim_{x \to 1} \frac{x^2}{x-1}$ Solution: Given: $\lim_{x \to 1} \frac{x^2-1}{x-1}$

$$= \lim_{\chi \to 1} \frac{(\chi - 1)(\chi + 1)}{(\chi - 1)}$$

$$= \lim_{\chi \to 1} |\chi + 1| = 1 + 1 = 2.$$

$$\lim_{\chi \to 1} \frac{\chi^2 - 1}{\chi - 1} = 2.$$

$$\lim_{\chi \to 1} \frac{\chi^4 - 1}{\chi^3 - 1}$$

$$\text{Solution: Given: him } \chi^4 - 1$$

$$\frac{\chi+1}{\chi^{3}-1} = \frac{\chi^{2}-1}{\chi+1} = \frac{\chi^{2}-1}$$

3.
$$\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$$
: Ans: 3. $\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$: Ans: 3. $\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$: Als: 4. The $\lim_{x \to 1} f(x) - 8 = 10$, $\lim_{x \to 1} f(x)$

4. If
$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$$
, find here $f(x)$ $\lim_{x \to 1} \frac{f(x) \cdot \theta(x)}{x - 1}$

Solution:
$$\frac{x+1}{x-1}$$
Solution:
$$\frac{f(x)-8}{x+1} = 10$$

$$= \lim_{x \to 0} \frac{f(x)}{x+1} = 10$$

$$\Rightarrow \lim_{x \to 1} f(x) - 8 = 10 \cdot \lim_{x \to 1} (x - 1) = 10(1 - 1) = 0$$

$$\therefore \lim_{x \to 1} f(x) = 8.$$

5. If
$$\lim_{x \to 0} \frac{f(x)}{x^2} = 5$$
, Find the following limits.

a) $\lim_{x \to 0} f(x)$, b) $\lim_{x \to 0} \frac{f(x)}{x}$.

Squeexe Theorem:

If
$$f(x) = g(x) = h(x)$$
 when $x = 6$ near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

1. Use the squeeze theorem, find the value of Lim $\chi^2 \sin(\frac{1}{x})$.

Solution: Given: Line
$$\chi^2 \sin\left(\frac{1}{\chi}\right)$$
.

W.K.T

 $-1 \leq \sin\left(\frac{1}{\chi}\right) \leq 1$
 $\Rightarrow -\chi^2 \leq \chi^2 \sin\left(\frac{1}{\chi}\right) \leq \chi^2$
 $\lim_{\chi \to 0} (-\chi^2) = \lim_{\chi \to 0} (\chi^2) = 0$
 $\Rightarrow \lim_{\chi \to 0} \chi^2 \sin\left(\frac{1}{\chi}\right) = 0$

[:By S.T].

2. Line
$$x^{4}$$
 cos $\left(\frac{2}{x}\right)$

3 dution: Given: $\lim_{x\to 0} x^{4} \cos\left(\frac{2}{x}\right)$

W. K.T, $-1 \leq \cos\left(\frac{2}{x}\right) \leq 1$.

$$\Rightarrow -x^{4} \leq x^{4} \cos(\frac{3}{x}) \leq x^{4}$$

$$\lim_{x \to 0} (-x^{4}) = \lim_{x \to 0} x^{4} = 0$$

$$\Rightarrow \lim_{x \to 0} x^{4} \cos(\frac{3}{x}) = 0 \quad [By \ S.7].$$

H.W.

3. Lim
$$\chi^2 \cos\left(\frac{1}{\chi^2}\right)$$

4.
$$\lim_{\chi \to 0} \sqrt{\chi^3 + \chi^3} \sin\left(\frac{\pi}{\chi}\right)$$
.

special Linuits:

1. Lim
$$\frac{x^n - a^n}{x - a} = n a^{n-1}$$
 for all rational values of n .

2. Lim
$$\frac{5^{\circ}n0}{0} = 1$$
 0 is Measured in radians.

2.
$$\lim_{n\to\infty} \frac{3^n n n}{6} = 1$$

bor all rational values of n .

3. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = 2$

1. Evaluate: Line
$$\frac{1+\cos 2x}{(\pi-2x)^2}$$
 Jan: 2016]

Solution: Given:
$$\lim_{x \to \pi/2} \frac{1 + \cos 2x}{(\pi - 2x)^2} = \lim_{x \to \pi/2} \frac{2 \cos^2 x}{(\pi - 2x)^2}$$

$$= \lim_{x \to \pi/2} \frac{2 \sin^2 (\sqrt[3]{2} - x)}{2^2 (\sqrt[3]{2} - x)^2} = \lim_{x \to \pi/2} \frac{1}{2} \left[\frac{\sin (\sqrt[3]{2} - x)}{\sqrt[3]{2} - x} \right]^2$$

$$= \lim_{x \to \pi/2} \frac{1}{2^2 (\sqrt[3]{2} - x)^2} = \lim_{x \to \pi/2} \frac{1}{2} \left[\frac{\sin (x - \sqrt[3]{2})}{(x - \sqrt[3]{2})} \right]^2$$

$$= \lim_{x \to \pi/2} \frac{1}{2^2 (x - \sqrt[3]{2})} = \lim_{x \to \pi/2}$$

2. H.W. Find Lim (1+x) . [: put x=1/n]

1.3 Continuity: Continuous: A function f is Continuous at a number 'a' if $\lim_{x \to a} f(x) = f(a)$ Di scontinuous: A function if is discontinuous at a number 'a' if $\lim_{x\to a} f(x) \neq f(a)$. Right Limit: A function f' is continuous from the right at 'a' is $\lim_{x\to a^+} f(x) = f(a)$. Left Linuit: A bunction if is continuous from the left at a if $\lim_{x \to a} f(x) = f(a)$. a) Locate the discontinuity of the function: 1. Explain the function $f(x) = \begin{cases} \cos x, & i & i & x \neq 0 \\ \cos x, & i & x \neq 0 \end{cases}$ a = 0 is discontinuous at a. Solution: Given: $f(x) = \begin{cases} \cos x, & x < 0 \\ 0, & x = 0 \\ 1-x^2, & x > 0 \end{cases}$ $w \cdot k \cdot T$ $\lim_{x \to a} f(x) = f(a)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \cos x = \cos 0 = 1$ f(0) = 0 $\therefore \lim_{x\to 0} f(x) \neq f(0).$: f(x) is distontinuous at 'a'.

Solution: Given:
$$f(x) = \frac{1}{1+e^{\sqrt{x}}}$$
.

Line $f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h)$

$$= \lim_{h \to 0} \frac{1}{1+e^{-\sqrt{x}}} = 1$$

$$\lim_{x \to 0} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h)$$

$$= \lim_{h \to 0} \frac{1}{1+e^{\sqrt{x}}} = 0$$

$$= \lim_{h \to 0} \frac{1}{1+e^{\sqrt{x}}} = 0$$

$$\lim_{x \to 0} f(x) = \frac{1}{1-e^{\sqrt{x}}} = 0$$

So $f(x)$ is discontinuous at $x = 0$.

3. Explain the function is continuous at 2.

a)
$$f(x) = x^{3} + 8$$
 [8] b) $f(x) = x^{2} + 7x + 10$ [-3]

a)
$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$
 [8] b) $f(x) = \frac{x^2 - 7x + 10}{x - 2}$. [-3]

Find the domain where the function f is continuous, Also find the numbers at which the function f is distontinuous, where $\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) = \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right)$

$$f(x) = \begin{cases} 1+x^2, & x \le 0 \\ 2-x, & 0 \le x \le 2 \\ (x-2)^2, & x > 2. \end{cases}$$

solution:

$$-\infty \leftarrow \frac{1+x^2}{0} \qquad 2-x \qquad (x-2)^2 \rightarrow \infty$$

(2-x) = 2 · · · · At x=0, $\overline{f(0)} = \lim_{x \to 0} f(x) = \lim_{x \to 0} (1 + x^{2}) = 1 \to 0$ $f(\bar{o}) = \lim_{\chi \to \bar{o}} f(\chi) = \lim_{\chi \to \bar{o}} (1 + \chi^2) = 1 \to 0$ $f(o^{\dagger}) = \lim_{x \to o^{\dagger}} f(x) = \lim_{x \to o^{\dagger}} (a - x) = a \rightarrow \emptyset$ From O. &, B weget, $f(\bar{o}) = f(o) \neq f(o^{+}).$ 30 δ is continuous on the left at x=0f is discontinuous on the right at x=0. Hence, f is discontinuous at x=0. At $\chi=2$, $f(z) = \lim_{x \to z} f(x) = \lim_{x \to z} (z - x) = 0 \to 0$ $f(\bar{a}) = \lim_{x \to \bar{a}} f(x) = \lim_{x \to \bar{a}} (a - x) = 0 \rightarrow 0$ $f(\lambda^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x - \lambda)^{2} = 0 \to \emptyset$ From O, O, B weget, $f(\bar{a}) = f(\bar{a}) = f(\bar{a}^{\dagger}).$ Hence f is continuous at x = 2. The domain of f is (-0,0) U(0,0). 5. Find the numbers that at which f is discontinuous, At which of numbers is f Continuous from the right from the left or reither? when $f(x) = \begin{cases} x+2, x \ge 0 & f(0) = 2 \\ e^{x}, 0 \le x \le 1 & f(0) = 1 \\ 2-x, x \ge 1 & f(0) = 1 \end{cases} \text{ at } x = 0, f(1) = e^{x} =$ b) function is continuous in a given interval:

1. Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1,1].

Solution:

$$\lim_{x \to -1^+} f(x) = 1 = f(-1); \lim_{x \to 1^-} f(x) = 1 = f(1).$$

2. suppose f and g are continuous functions such that g(x) = 6 and $\lim_{x \to a} \left[3 f(x) + f(x) g(x) \right] = 36$. Find f(x).

Solution: Criven:
$$\lim_{x \to 2} \int_{0}^{x} f(x) + f(x) g(x) = 36$$
, $g(x) = 6$.

$$\Rightarrow$$
 3 him $f(x) + \lim_{x \to 2} f(x) g(x) = 36.$

$$\Rightarrow f(a) [3+6] = 36 \Rightarrow f(a)(9) = 36$$

 $f(a) = 4.$

3. For what value of the constant C is the function

if continuous at
$$l-\infty,\infty$$
). [Jan: 2018]
$$f(x) = \int Cx^{2} + 2x, x = 2$$

$$\chi^{3} - Cx, x \geq 2.$$

Solution:

$$-\infty \leftarrow \frac{C\chi^{3}+2\chi}{2} \qquad \chi^{3}-C\chi \rightarrow \infty$$

At
$$x = 2$$
, criven: f is continuous.
 $\Rightarrow f(\bar{x}) = f(x) = f(x^{+}) \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{+}} f(x) = \lim_{x \to x^{+}} \left[x^{3} - cx \right] = 8 - 2c \cdot + 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^$

5.

Show that f is continuous on $(-\infty, \infty)$. $f(x) = \begin{cases} 3inx, & x \ge 1/4 \\ 0.5x & 1 \ge 1/4 \end{cases}$

Solution:

At
$$x = \overline{\eta}_{4}$$

To prove: $f(\overline{\eta}) = f(\overline{\eta}) = f(\overline{\eta}) \rightarrow A$

$$f(\overline{\eta}/4) = \lim_{\chi \to \overline{\eta}/4} f(\chi) = \lim_{\chi \to \overline{\eta}/4} \cos \chi = \cos 45^{\circ} = \frac{1}{\sqrt{2}} \to 0$$

$$f(\overline{\eta}/4) = \lim_{\chi \to \overline{\eta}/4} f(\chi) = \lim_{\chi \to \overline{\eta}/4} \sin \chi = \lim_{\chi \to \overline{\eta}/4} \cos \chi = 0$$

$$f(\overline{\eta_{4}}) = \lim_{\chi \to \overline{\eta_{4}}} f(\chi) = \lim_{\chi \to \overline{\eta_{4}}} \sin \chi = \sin 45 = \sqrt{2} \to 2$$

$$f\left(\overline{x}^{t}\right) = \lim_{\chi \to \frac{\pi}{4}} f(\chi) = \lim_{\chi \to \frac{\pi}{4}} los\chi = cos45 = \frac{1}{\sqrt{2}} \to 8$$

From 0 & 0 & 3 weget,

$$f\left(\overline{y_{4}}\right) = f\left(\overline{y_{4}}\right) = f\left(\overline{y_{4}}\right)$$

:. f is continuous on (-0100).

6. Show that f is continuous on $(-\infty,\infty)$, $f(x) = \int \sqrt{x}, x \ge 1$.

Ans:

$$\sim \frac{\chi^2}{\sqrt{\chi^2}} \sqrt{\chi}$$

To prove: $f(i^-) = f(i) = f(i^+)$

ANS: 1.

· f is continuous on L-00,00).

1.4 Derivatives:

Tangent Line:

The tangent line to the curve y = f(x)at the point P (a, fla)) is the Line through P with Slope $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ provided that this limit exists.

Derivative: The derivative of a function of at a number a, denoted by f'(a) is, $f'(\alpha) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

WOTE:

The equation of the tangent line is. f(x)= 9= g(x) (y-y,)=m(x-x1). f(x) = y'= g'(x). (or) y - f(a) = f'(a)(x-a). m = f'(x)=4'

1. Find an equation of the targent line to the curve at the given point $y = \sqrt{x}$, (1.1).

Given: $Y = f(x) = \sqrt{x}$, (1,1) $y' = f(x) = \frac{1}{2\sqrt{x}}$

Slope $m = f'(x) = (y')_{(11)} = \frac{1}{2}$.

The equation of the tangent line at (1,1) is,

$$y-y_1 = m(x-x_1).$$

 $y-1 = \frac{1}{2}(x-1). \Rightarrow 2y-2 = x-1$
 $y = \frac{1}{2}x + \frac{1}{2}.$

2. Find the blope of the tangent line to the parabola $y = 4x - x^2$ at (1,3).

Solution: Given:
$$y = 4x - x^2$$

$$f(x) = 4 - 2x$$

$$m = f'(1) = 4 - 2$$

$$m = 2.$$

3. Find an equation of the tangent line to the ob y=g(x) at x=5, "b g(5)=-3.and g'(5)=4.

Let y=g(x). Given: g(5)=-3, g(5)=4. Solution: (Slope) m = y' = g'(x) = g(x)/x=5 = 4

$$y = g(x) = g(x)/x=5$$

$$x_1 = 5$$
, $y_1 = -3$ and $m = 4$.

.. The equation of the targent line is,

$$y-y_1 = m(x-x_1)$$

 $y+3 = 4(x-5)$.

4. It an equation of the tangent line to the curre (4) y = f(x) at point where a = 2 is y = 4x - 5, find f(a) and f'(a).

solution: Given:
$$y = f(x) = 4x - 5$$

 $f'(x) = 4$
 $f(x) = 8 - 5 = 3$.
 $m = f'(x)/_{x=2} = f'(x) = 4$

5. Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3,3) and at what point the tangent line horizontal in the first Quadrant. [u.0:2018 Jan]

solution:

Griven:
$$x^3 + y^3 = 6xy$$
 at $(3,3)$,

 $\Rightarrow 6xy = x^3 + y^3$
 $\Rightarrow 2y = \frac{x^3 + y^3}{6x} = \frac{x^3}{6x} + \frac{y^3}{6x}$
 $\Rightarrow 2y = \frac{x^3 + y^3}{6x} = \frac{x^3}{6x} + \frac{y^3}{6x}$
 $\Rightarrow 3x^2 + 3y^2y' = 6xy + 6xy'$
 $\Rightarrow 3x^2 + 8y^2y' = 6y + 6xy'$
 $\Rightarrow 3y^2y' - 6xy' = 6y - 3x^2$
 $\Rightarrow 3y^2 - 6x$
 $\Rightarrow 3y^2 - 6x$
 $\Rightarrow 3y^2 = -1 \Rightarrow \frac{dy}{dx} = -1 \Rightarrow m = -1$

The equation of the tangent line at (8,3) is, y-y, = $m(x-x_i)$ y-3 = (-1) (x-3) y-3 = -x+3

> x +y = 6.

To find the point of the tangent line horizontal in the Brot quadrant.

$$y' = 0$$

$$y' = 6y - 3x^{2} = 0$$

$$\Rightarrow 6y - 3x^{2} = 0 \Rightarrow 2y = x^{2}$$

$$\therefore y = x^{2}/2.$$

$$\mathcal{D} \Rightarrow \qquad \chi^{3} + \chi^{3} = 6\chi y$$

$$\chi^{3} + (\chi^{2}/2)^{3} = 6\chi (\chi^{2}/2)$$

$$\Rightarrow \qquad \chi^{3} + \chi^{6} = 3\chi^{3} \Rightarrow \chi^{6}/8 = 3\chi^{3}$$

$$\Rightarrow \qquad \chi^{3} = 16 \Rightarrow \chi^{3} = (2)^{4}$$

$$\therefore \qquad \chi = 2^{4/3}$$

$$\chi = 2^{4/3}$$

$$\Rightarrow \qquad y = (2^{4/3})^{3} = 2^{3/3}$$

$$\Rightarrow \qquad y = 2^{5/3}$$

$$\therefore \qquad \chi = 2^{4/3}$$

$$\Rightarrow \qquad \chi = 2^{4/3}$$

6. Find an equation of the tangent line to the parabola $y = x^2 - 8x + 9$ at the point (3, -6).

solution: y = - 2x.

7. Find the Slope of the tangent to the curve $y = 1/\sqrt{x}$ at the point where x = a.

Find equations of the tangent lines at the points (1,1) and (4,1/2).

```
1.5 Differentiation Rules:
```

- a) Derivatives of polynomials:
- 1) Equation of tangent line is $y-y_1 = m(x-x_1), m = \frac{dy}{dy}$
- 2) Equation of normal line is $y-y_1 = -\frac{1}{m}(x-x_1)$ dx
- 1. Find an equation of the tangent line and normal

[line to the curve the given point $y = 3x^3 - x^3$, (1,2). Solution: Given: y=3x2-x8, (1,2)

$$y = 3x^2 - x^8 = y' = 6x - 3x^8$$

 $m = (y')_{1/2} = 6-3 = 3.$

a) Equation of tangent line is, b) Equation of normal line is, $y-y_1=-\frac{1}{m}\left(x-x_1\right)$

 $y-y_1 = m(x-x_1)$

$$(y-2) = 3(x-1)$$
 $(y-2) = -\frac{1}{3}(x-1)$

$$\Rightarrow y = 3x - 1$$

$$y = -x + 7$$

$$y = -3x + 73$$

2. H.W $y = \sqrt{x} = (x)^{4}$, Ans: y = 4x + 34, y = -4x + 5.

3. The equation of motion of a particle is S=2t-5t2 +3t +7, where 3 is measured in centimeters and t in seconds. Find the acceleration as a function ob time. What is the acceleration after 2 seconds?

Solution: The velocity and acceleration are,

$$V(t) = \frac{ds}{dt} = 6t^{3} - 10t + 3.$$

$$a(t) = \frac{dv}{dt} = 12t - 10$$

$$\left[a(t)\right]_{t=2} = 14 \text{ cm/3}^{2}$$

6

4. The equation of motion of a particle is $S = t^3 - 3t$, where S is in meters and t is in seconds. Find

- a) The velocity and acceleration as function of t,
- b) The acceleration after 28 and
- c) the acceleration when the velocity is o.

Solution: Given: S= t3-3t.

a)
$$V = \frac{ds}{dt} = 3t^{\frac{3}{2}} - 3$$

$$a = \frac{dV}{dt} = 6t$$

- c) Find acceleration when the velocity is 0. $V=0 \Rightarrow 3t^{3}-3=0 \Rightarrow 3t^{2}=3$ $\Rightarrow t^{3}=1 \Rightarrow t=\pm 1.$ $\therefore \left[\frac{dv}{dt}\right]_{t=1} = 6 \text{ m/s}^{3} \quad \text{[reject } t=-1\text{]}.$

Desevatives:

5. Find the first and second derivatives of the function $f(x) = 10 x^{10} + 5x^5 - x$.

Solution: Given:
$$f(x) = 10 x^{10} + 5x^{5} - x$$

 $f'(x) = 10 \left[10x^{9} \right] + 5 \left[5x^{4} \right] - 1$
 $= 100 x^{9} + 35 x^{4} - 1$

$$\int_{0}^{\pi} |x| = 100 \int_{0}^{\pi} |x|^{8} \int_{0}^{\pi} |x|^{3} \int_{0}^{\pi} |x|^{2} = 100 \int_{0}^{\pi} |x|^{8} \int_{0}^{\pi} |x|^{2} \int_$$

7. Find a second degree polynomial p such that P(a) = 5, p'(a) = 3, P''(a) = 2.

Solution: Criven:
$$P(a) = 5$$
, $P(a) = 3$, $P'(2) = 2$.

Let
$$p(x) = ax^2 + bx + c \rightarrow 0$$

 $p'(x) = 2ax + b \rightarrow 0$
 $p'(x) = 2a \rightarrow 0$

Given:
$$p'(a) = 2 \Rightarrow p'(a) = 2a = 2 \Rightarrow a = 1$$

 $p'(a) = 3 \Rightarrow p'(a) = 4a + b = 3$
 $\Rightarrow 4 + b = 3$

$$p(a)=5 \Rightarrow p(a) = 4a + 2b + c = 5 \Rightarrow 4-2+c=5 \Rightarrow c=3$$

Scanned by CamScanner

1.6 Marama and variena of functions of one

variable:

a) Absolute Maximum and absolute Minimum:

Definition: Let c be a number in the domain D of a function f. Then f(c) is the

- * absolute Maximum value of f on D if f(c) > f(x) for all x in D.
- * absolute runimum value ob f on Dib f(c) \left(x)
 for all x in D.

Definition: The number f(c) is a

- * local Maximum value of f if f(c) > f(x) when x is near C.
- * local minimum value of f is f(c) = f(x) when x is near c.

Extreme value Theorem:

It f is continuous on a closed interval [a,b], then f attains an absolute Maximum value f(c) and an absolute minimum value f(d) at some numbers C and d in [a,b].

Fernal's Theorem:

If f has a local Marximum or Minimum at C and if f'(c) exists then f'(c)=0.

Definition:

A crétical number of a function f 3 a number C in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

The closed Interval Method:

To find the absolute Maximum and Minimum values of a continuous function for a closed interval [9,6].

- 1. Find the values ob f at the cuitical numbers of in (a,b).
- 2. Find the values of f at the end points of the interval.
- 3. The largest of the values from steps 1 and 2 is the absolute Maximum value; the smallest of these values is the absolute Minimum Value.

1. Find the Critical values of the function: $f(x) = 5x^{2} + 4x.$

Solution: Given: $f(x) = 5x^2 + 4x \rightarrow 0$, Critical numbers of f occur at f(x)=0+2 $f'(x) = 10 \times +4 \rightarrow 3$

Ø → 10x +4=0 → x = -4/10 => x=-3/5

:. The Critical Value = -2/5.

 $2. | g(x) = ax^3 - 3x^9 - 36x.$

Given: $g(x) = 2x^3 - 3x^2 - 36x - 40$ solution:

critical numbers of g occup at g'(x)=0. -> @ $9'(x) = 6x^2 - 6x - 36$ $\Rightarrow x = -2, x = 3.$:. Crétical value =-2,3. 5. $f(x) = x^{3}e^{-3x}$. Ans: x = 0, $x = \frac{3}{3}$. 4. $f(x) = x^2 + \frac{2}{x}$ Ans: x = 1. 5. Find the absolute and local Maximum, values of $f(x) = \frac{1}{x} / x \ge 1.$ solution: Given: $f(x) = \frac{1}{x}, x > 1$. 2 3 Masamum $f(i) = \frac{1}{1} = 1$ is the absolute runimum of f. 6. $f(x) = \begin{cases} 1-x & ib & 0 \le x < 2 \\ 2x-4 & ib & 2 \le x \le 5. \end{cases}$

Solution:

χ	Q	1	2	3
fix)	1	0	0	یک

f(3) = 6-4 = 2 is the absolute Maximum. 7. $J(x) = |x|, -1 |2x|^2$

Ans: f10) = 0 is the A. Nienimum. No, absolute Maximum.

The closed interval Metroop 1. Find the absolute Maximum and Minimum values of $f(x) = x^3, [-2,1]$

t. solution: Given: f(x) = 22, [-2,1] ->0 Critical numbers of foccur at $f'(x)=0 \rightarrow \emptyset$ $f(\mathbf{x}) = 2x$

:. Ceitical value = 0. f(-2) =4 is the a. Maximum value of f

f(0) = 0 is the a ninimum value of f.

	end point	Critical point	end point
χ	-2	0	1
fix)	4	0	1

2. $f(x) = 3x^4 - 16x^3 + 18x^2, -1 \le x \le 4$

Solution: Given: $f(x) = 3x^{\frac{1}{2}} 16x^{\frac{3}{2}} + 18x^{\frac{3}{2}} - 1 \le x \le 4 \to 0$

Critical numbers of foccus at $f'(x) = 0 \rightarrow \emptyset$

 $f'(x) = 12x^3 - 48x^3 + 36x$

 $(3) = 12 x^3 - 48 x^2 + 36 x = 0$ > 12x \[x = 4x + 3 \] = 0

 $\Rightarrow x = 0.3.1.$

· Critical value = 0,1,3.

	end point	Critical point	Cutical Point	Critical	end point
χ	-1	0	l	3	4
fix)	a.137	0	5	-2,7	<i>3</i> 2

f(3) = -27 is the a. Minimum value of f f(-1) = 37 is the a Maximum value of f

 $f(x) = \chi^3 - 3\chi^2 + 1$, $-1 \leq \chi \leq 4$. $\int_{0}^{0.5} f(4) = 17$, f(4) = -3

1.6 (b) Increasing / Decreasing test:

- a) If f(x)>0 on an interval, then f is increasing on that interval.
- b) If f(x) 20 on an interval, then f is decreasing on that interval.

First Derivative Test:

Suppose that C is a critical number of a continuous function f.

- a) If f' Changes from positive to negative at C, then f has a local Maximum at C.
- b) If f' changes from regative to positive at c, then f has a local Minimum at C.
- e) If I does not Change sign at C (Ex: 18 f is positive on both sides) then I has no local maximen of Minimum at C.

Concare upward / concare downward:

Ib the graph of lies above all of its tangents on an interval I, then it is called Concave upward on I, If the graph of lies between all of its tangents on I, it is called Concave downward on I.

Concoure upward = Concoure downward.

Concavity Test:

a) If f'(x) to for all x in I, then the graph of f is concave upward on I.

6) If f'(x) <0 for all x in I, then the graph ob f is concave downward on I.

Inflaction point:

A point P on a curve y=fix) is called an inflection point is f is continuous there and the curve changes from Concave upward to Concave downward or from concave downward to Concave upward at P.

selond Derivative Test:

Suppose f'is continuous real C.

- a) If f(c) = 0 and f(c) > 0, then f has a local Minimum at c.
- b) If f'(c) = 0 and $f''(c) \ge 0$, then f has a local Maximum at C.

Arower the following questions about the functions whose derivatives are given:

- a) what are the critical point ob f?
- b) on what interval is f increasing or decreasing?
- c) At what points, if any, does f assume local Maximum and Minimum values?
- d) Find intervals of concavity and the inflection points.

1. $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ [U.a. Jan 2016]

O Solution: Prives

Given: $f(x) = 3inx + los x, 0 \le x \le 2i$ f'(x) = los x - 3inx $f'(x) = 0 \Rightarrow los x - 3inx = 0$ $\Rightarrow los x = 3inx.$

Text.	a) exitical points of $\sqrt{1}/4 + 36\delta = 2\pi + \sqrt{1}/4$	= 1/4 = 1/4 / 54	1. 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	8. 5 kja
12.	House Interval	sign oz j'	Behaviour 08 f	<u>G</u> .
1	O CX CT/4	+	increasing	9400
Ma	1/4 CX 251/4	-	decreasing	Sin (270
10/4	5 5 1/4 2x 221	+	increasing.	
614				(54+
3/1	· ·	ve test is a		(90)
0	(i) Maximum at Typ	, f (1/4) = 311	11/4 + COS 11/4	
100		$=\frac{1}{\sqrt{2}}$	$- + \sqrt{2} = \sqrt{2}$	4 5 4 5
3 2 2	(ii) Nienemum at 511/4	= V2		3.3.5
4 5	(1) 11.01.01.01	1 4 (51//4) = 3	Sin \$\frac{17}{4} + cos \$\frac{57}{4}	1 F 1 5
	d) f'(x) = - sinx - 1	= 16\-= ×600	12 nx +103x)	
V6	$f(x) = 0 \Rightarrow -(3)$			14 + 11
	Sas 190+45) => 3	Sinx = losx	Sin(270+145)	
O *	$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{4} = \frac{1}{3} = \frac{1}{4} + \frac{1}{4} = \frac{1}{3} = \frac{1}{4} + \frac{1}{4} = \frac$	= 311 , 111 ,	Sin(20+46) = $-\cos 45 = \frac{311}{2} + \frac{11}{4}$	= 711
	Interval :	sign of f" B	ehavious of f	7
An 41	0 C X C 8 1/4		ontave down	
10 m/s	31 Lx C 1/4	+ (ioncave up	
6/3	TI/4 LX L2T	- C	oncave down	
			,	
	e) Inflection points			
	(導,0)(費,	0)	-	
	$\int : \sin \alpha, f(\frac{3\pi}{4}) = 0$	$f\left(\frac{711}{4}\right)=0.$		
	1			

3.
$$f(x) = \chi^{4} - 2\chi^{2} + 3$$
 [U. R. Jan 2016]

Solution: (niven: $f(x) = \chi^{4} - 2\chi^{2} + 3$
 $\Rightarrow f'(x) = +\chi^{3} - +\chi = +\chi(\chi^{2} - 1)$
 $= +\chi(\chi - 1)(\chi + 1) = 0$
 $\Rightarrow \chi = 0, \chi = 1, \chi = -1$

2) Chilical Points are $\chi = 0, \chi = 1, \chi = -1$.

1) District Sign of f' Behavior of f .

1) District Sign of f' Behavior of f .

1) District derivative test is a local, increasing which increasing $f'(\chi) = \chi^{2} + \chi^$

 $\frac{1}{\sqrt{3}}$ $\angle x \angle \omega$

Conlare up

e) Inflection points are
$$\left(\pm \frac{1}{\sqrt{3}}, \frac{22}{9}\right)$$

since, $f\left(\pm \frac{1}{\sqrt{3}}\right) = \frac{22}{9}$.

H.W.

b)

$$3 f(x) = \chi + 2 \sin x, 0 \le \chi \le 2\pi$$

4.
$$f(x) = 5x^4 - 4x^3 - 12x^3 + 5$$
 $3x^4 - 16x^3 + 18x^2 - 1 - 1 \le x \le 4$

5. Find the local Maximum and Minimum Values of f Using both the first and second derivative tests. $y = x^4 - 4x^3$ with respect to concavity and points of inflection.

Solution: Given:
$$f(x) = x^{4} - 4x^{3}$$

$$f'(x) = 4x^{3} - 12x^{2}$$

$$f'(x) = 0 \Rightarrow 4x^{3} - 12x^{2} = 0$$

$$\Rightarrow 4x^{2}(x-3) = 0$$

a): The Critical values are 0,3.

Interval	5,9n 03 f	Behaviour of f
(-0,0)		decreasing
(0,3)		decreasing
(3,0)	+	Increasing

c) First derivative test tells us that f does not have a local Maximum or ruinimum at O.

d)
$$f''(x) = 12x^{2} - 24x$$

 $f''(x) = 0 \Rightarrow 12x^{2} - 24x = 0$
 $\Rightarrow 12x(x-a) = 0$
 $\Rightarrow x = 0, x = 2.$

Interval	f"(x)	Behaviour od f
(-0,0)	+	Concare up
(0,2) (2,0)	+	Concave cop

: Since,
$$f(0) = 0$$
, $f(a) = -16$.
f) The Second derivative test:

$$\int_{0}^{\infty} (c) = 0.$$

$$\int_{0}^{\infty} (x) = 12x^{2} - 24x.$$

f'(8) = 0, f''(3) > 0, f(3) = -27 is a local numinum.

The second derivative test gives no information about the critical number 0.

since f'(0) = 0, f"(0) = 0.

But first derivative test gives f does not have a local Maximum or ruinimum at 0.

6. Find the local Maximum and Minimum values of $f(x) = x^5 - 5x + 3$ using both the first and second derivative tests.

Ans: $f'(x) = 5x^{4} - 5$ f'(1)=0, f'(-1)=0. f''(1)=a0, f''(-1)=-a0.

18t deivative: 2nd derivative:

i) max
$$f(-1) = 7$$
 i) max $f(-1) = 7$

ii) Nûn
$$f(1) = -1$$
 i) Min $f(1) = -1$.

i) third the interests on thich it is increasing or decreasing (i) third the local max of local min. values of f.

(iii) Find the intends of concerty of the inflection forms.

$$f(x) = 6x^{3} + 3x - 36x$$

$$f(x) = 6x^{3} + 6x - 36x$$

 $f(x) = 0 \Rightarrow 6(x^2 + x - 6) = 0 \Rightarrow 6(x + 3)(x - a) = 0$

Pare x=-4 f(x) = b(-4+3)(4-2) f(x) = b(x) = b

1	Interval	Nature 9 fl(x)	J	
	(-0,-3)	+	1	→ sis max. at x=-3
	(-3, a)	_	1	→ fis min at x=2.
	(2, 4)	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

(ii)
$$f(-3) = a(-3)^3 + 3(-3)^4 - 3b(-3) = -54 + 27 + 108 = 81$$

 $f(a) = a(a)^3 + 3(a)^4 - 3b(a) = 1b + 12 - 72 = -44$

(iii)
$$f'(x) = bx^{2} + bx - 3b$$

 $f''(x) = 12x + b \implies$
 $f''(x) = 0 \implies 12x + b = 0$
 $\Rightarrow x = -\frac{b}{12} = -\frac{1}{2}$. At $x = -\frac{1}{2}$,
 $f(x) = a(\frac{1}{2})^{3} + 3(\frac{1}{2})^{2} - 3b(\frac{1}{2})^{2}$
 $= -37_{2}$.

Then
$$x = -1$$

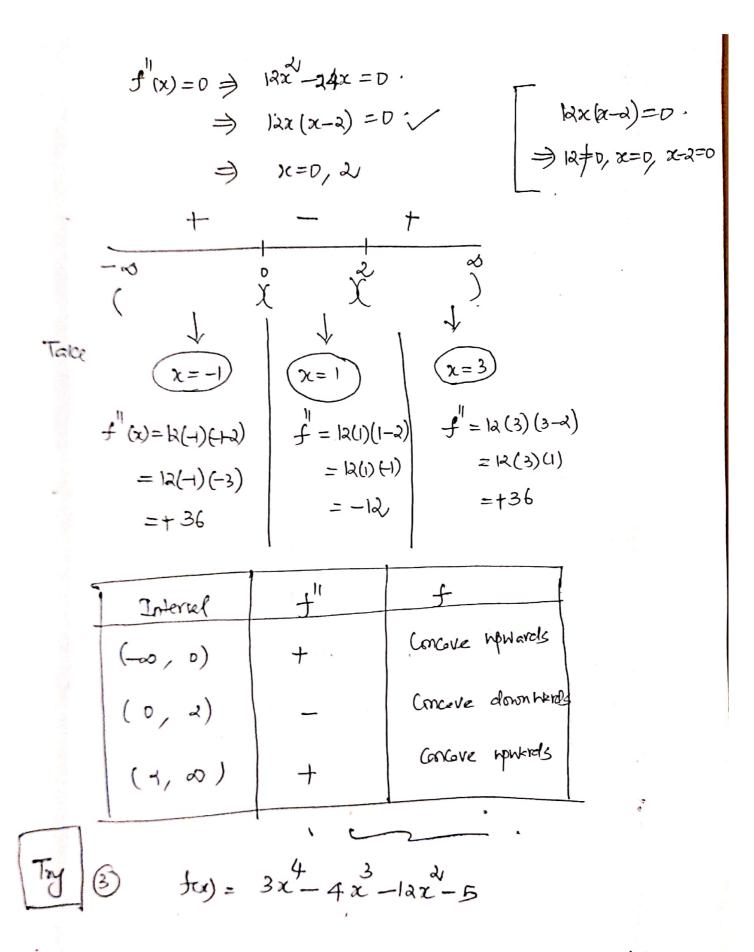
$$x = 0$$

$$f'(x) = 12(+1) + 1 = -b$$

$$f''(x) = b$$

Internal	Nemme 9 f"	f
(一0,一岁)		Conceve downward
(-½,め)	+	- Conceve nowered

Here intechm point is (-1/2/-3/2).



or move to

next Page.

PTO

(i)
$$f'(y) = \lambda_{1}x^{2} - \lambda_{2}x^{2} - \lambda_{4}x$$

 $f''(x) = 3bx^{2} - \lambda_{4}x - \lambda_{4}$
 $f''(x) = 3bx^{2} - \lambda_{4}x - \lambda_{4} = 0$
 $\Rightarrow \lambda_{1}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{2}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{2}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{3}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{4}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2}$

Interval	7 ,	7
(-0, -0.5)	+	Increning
(-0.5, 1.2)	_	Decressy
(1.2, 0)	+	Dicrany

Differentiation Rules!

1. Derivative of a constant function is zero.

(ie)
$$\frac{d}{dx}(c) = 0$$
.

2. The Power Nule ?

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

3. The constant multiple Tule

3. The constant
$$\frac{d}{dx} \left[c f(x) \right] = c \frac{d}{dx} f(x)$$

4. The Sum Mule

$$\frac{d}{dx}\left[f(x)+g(x)\right] = \frac{d}{dx}f(x)+\frac{d}{dx}g(x).$$

5. The difference Tule

$$\frac{d}{dx} \left[f(x) - g(x) \right] = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)$$

6. Derivalive of the natural exponential function

$$\frac{d}{dx}(e^x) = e^x$$

7. The product Trule

$$\frac{d}{dx} \left[f(x)g(x) \right] = f(x) \cdot \frac{d}{dx} \left[g(x) \right] + g(x) \cdot \frac{d}{dx} \left[f(x) \right]$$

$$\frac{d}{dx} \left(u(x) \right) = u(x) + v(x)$$

quotient Mule
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} \left[f(x) \right] - f(x) \cdot \frac{d}{dx} \left[g(x) \right]}{\left[g(x) \right]^{2}}$$

$$\frac{d}{dx} \left(\frac{y}{y} \right) = \frac{g(x) \cdot \frac{d}{dx} \left[f(x) \right] - f(x) \cdot \frac{d}{dx} \left[g(x) \right]}{y^{2}}$$

Derivatives of Polynomials:

1. Differentiate the following function
(i)
$$f(x) = 7$$
 (ii) $f(x) = x^2$ (iii) $y = t^4$

(i)
$$f(x) = 7$$
 (ii) $f(x) = x^{2}$ (iii) $f(x) = x^{2}$ (iii) $y = x^{2}$ (iv) $y = 4x^{2} + 6x + C$

(vi)
$$y = \chi^2 (1-2\chi)$$
. (vii) $y = \frac{1}{\chi^2}$

(i) Given: f(x) = 7

$$f'(\alpha) = 0$$

(ii) Given:
$$f(x) = x^2$$

$$f'(x) = 2x^{2-1}$$

$$=2\alpha_{\parallel}$$

$$\frac{dy}{dt} = y' = 4t^{4-1} = 4t^{3}$$

(iv) Given:
$$y = \sqrt{2}$$

$$\frac{dy}{dx} = y' = \frac{1}{2} \frac{x^{\frac{1-2}{2}}}{x^{\frac{1}{2}}}$$

$$= \frac{1}{2} \frac{x^{-\frac{1}{2}}}{x^{\frac{1}{2}}}$$

$$= \frac{1}{2} \frac{1}{x^{\frac{1}{2}}} = \frac{1}{2\sqrt{1x}}$$

$$= \frac{1}{2\sqrt{1x}}$$

(v) Given:
$$y = ax^2 + bx + C$$

$$\frac{dy}{dx} = 2ax + b//.$$

(vi)
$$\frac{dy}{dx} = \frac{x^2(1-2x)}{2x^2} = \frac{x^2-2x^3}{2x^2} = \frac{2x-2(3)x^2}{2x^2}$$

 $=-\frac{2}{\chi^3}$

(Vii) Given:
$$y = \frac{1}{2}x^2 = \overline{x}^2$$

$$\frac{dy}{dx} = -2 \overline{x}^{-2-1}$$

$$= -2x^{-3}$$

2. Find the first and second derivatives of the following function of
$$f(x) = 10x^{10} + 5x^{5} - x$$
.

Given:
$$f(x) = 10x^{10} + 5x^{5} - x$$

$$f'(x) = 10(10x^{9}) + 5(5x^{4}) - 1$$

$$f'(x) = 100x^{9} + 25x^{4} - 1$$

$$f''(x) = 100(9x^{8}) + 25(4x^{3})$$

$$f''(x) = 900x^{8} + 100x^{3}$$

Derivatives of Exponential function!

3. Differentiate the following functions:

(i)
$$y = e^{2x} - x$$
 (ii) $e^{x} + \frac{2}{12}$

(iii)
$$y = a^{x}$$
 (iv) $y = \frac{xe^{x}-1}{x}$

5dh

(i) Given:
$$y = e^{2x} - x$$

$$\frac{dy}{dx} = 2e^{2x} - 1.$$

(ii) Given: Let
$$y = e^{\alpha} + \frac{2}{\sqrt{x}} = e^{\alpha} + 2x^{-1/2}$$

$$\frac{dy}{d\alpha} = e^{\alpha} + 2(-1/2)x^{-1/2-1}$$

$$= e^{\alpha} - x^{-3/2}.$$

(iii)
$$y = a^{x}$$

 $y = e^{\log a^{x}} = e^{x \log a} = (\log a)^{x}$
 $y' = \frac{dy}{dx} = e^{(\log a)^{x}} (\log a) = a^{x \log a}$

(iv) Given:
$$y = \frac{xe^{x}-1}{x} = \frac{xe^{x}}{x} - \frac{1}{x}$$

$$y = e^{x} - \frac{1}{x} = e^{x} - x^{-1}$$

$$y' = e^{x} - (-1)x^{-1-1}$$

$$= e^{x} + x^{2} = e^{x} + \frac{1}{x^{2}}$$

Freduct and Quotient Tules:

Differentiate the following function $y = xe^{2x}$.

50h. Given:
$$y = x e^{2x}$$

$$\frac{dy}{dx} = x \frac{d}{dx} (e^{2x}) + e^{2x} \frac{d}{dx} (x)$$

$$= x (2e^{2x}) + e^{2x} (1)$$

$$= 2x e^{2x} + e^{2x}$$

$$= e^{2x} (2x+1).$$

5. If
$$f(x) = \frac{\chi^2}{1+2\chi}$$
, then find $f'(x)$.

Solp., Given: $f(x) = \frac{\chi^2}{1+2\chi}$

$$60 \ln \frac{\text{Given:}}{1+2\pi}$$

$$f'(x) = \frac{(1+2x)\frac{d}{dx}(x^2) - x^2\frac{d}{dx}(1+2x)}{(1+2x)^2}$$

$$= \frac{(1+2x)(2x)-x^{2}(2)}{(1+2x)^{2}}$$

$$= \frac{2x(1+2x)-2x^2}{(1+2x)^2}$$

$$= \frac{2x + 4x^2 - 2x^2}{(1+2x)^2}$$

$$= \frac{2x^2 + 2x}{1 + 4x^2 + 4x}$$

$$f'(x) = \frac{2x(x+1)}{1+4x^2+4x}$$

7

6. Find
$$f'(x)$$
 and $f''(x)$ of $f(x) = x^4 e^x$.

Solp Given
$$f(x) = x^4 e^{x}$$

$$f'(x) = x^4 \frac{d}{dx} (e^{x}) + e^{x} \frac{d}{dx} (x^4)$$

$$= x^4 e^{x} + e^{x} (4x^3)$$

$$= x^4 e^{x} + 4x^3 e^{x}$$

$$\therefore f'(x) = x^4 e^{x} + 4x^3 e^{x}$$

$$f''(x) = x^{4} \frac{d}{dx} (e^{x}) + e^{x} \frac{d}{dx} (x^{4}) + 4 \left[x^{3} \frac{d}{dx} (e^{x}) + e^{x} \frac{d}{dx} (x^{3}) \right]$$

$$= x^{4} e^{x} + e^{x} (4x^{3}) + 4 \left[x^{3} e^{x} + e^{x} (3x^{2}) \right]$$

$$= x^{4} e^{x} + 4x^{3} e^{x} + 4x^{3} e^{x} + 12x^{2} e^{x}$$

$$= x^{4} e^{x} + 8x^{3} e^{x} + 12x^{2} e^{x}$$

$$= x^{4} e^{x} + 8x^{3} e^{x} + 12x^{2} e^{x}$$

$$= x^{4}e^{x} + 8x^{3}e^{x} + 12x^{2}$$

$$\therefore f''(x) = e^{x} \left[x^{4} + 8x^{3} + 12x^{2} \right].$$

7. Find $f'(x) = \frac{x^3}{1-x^2}$

$$\frac{f'(x)}{f'(x)} = \frac{x^3}{1-x^2}$$

$$\frac{f'(x)}{(1-x^2)^2} = \frac{(1-x^2)(3x^2) - x^3(0-2x)}{(1-x^2)^2}$$

$$= \frac{(1-x^2)^3x^2 + 2x^4}{(1-x^2)^2} = \frac{3x^2 - 3x^4 + 2x^4}{(1-x^2)^2}$$

$$\therefore f'(x) = \frac{3x^2 - x^4}{(1-x^2)^2} = \frac{x^2(3-x^2)}{(1-x^2)^2}.$$

Derivatives of Trigonometric function!

1. Find the derivatives of the following functions

(i)
$$y = x^4 - \sin x$$

(ii) $y = x^3 \sin x$

(i)
$$y = x^4 - 6inx$$

(ii)
$$y = x^3 \sin x$$

(iii)
$$y = \frac{\cos x}{1 - \sin x}$$
 (iv) $y = \frac{x \sin x}{1 + x}$

(iv)
$$y = \frac{x \sin x}{1+x}$$

$$y' = \frac{dy}{dx} = 4x^3 - \omega x.$$

$$y' = 4x^3 = \cos x$$

(ii)
$$y = x^3 \sin x$$

$$y' = \frac{x^3 \sin x}{dx}$$

$$y' = \frac{dy}{dx} = \frac{x^3 (\cos x) + \sin x (3x^2)}{x^3 + \sin x}$$

$$y' = x^3 \cos x + 3x^2 \sin x.$$

(iii) Given:
$$y = \frac{\cos x}{1-\sin x}$$

(iii) Given:
$$y = \frac{dy}{dx} = \frac{(1-\sin x)(-\sin x) - \cos x(0-\cos x)}{(1-\sin x)^2}$$

$$y' = \frac{dy}{dx} = \frac{(1-\sin x)^2}{(1-\sin x)^2}$$

$$= -\frac{\sin x + \sin^2 x + \cos^2 x}{(1-\sin x)^2}$$

$$= \frac{-\sin x + \cos^2 x}{(1-\sin x)^2}$$

$$=\frac{1-3i6x}{(1-5inx)^2}=\frac{1}{1-5inx}$$

(iv)
$$y' = \frac{x \sin x}{1+x}$$

$$y' = \frac{dy}{dx} = \frac{(1+x)[x(\omega x) + \sin x(y)] - x \sin x(0+1)}{(1+x)^{2}}$$

$$= \frac{(1+x)[x\cos x + \sin x] - x \sin x}{(1+x)^{2}}$$

$$= \frac{x\cos x + \sin x + x^{2}\cos x + x \sin x - x \sin x}{(1+x)^{2}}$$

$$= \frac{x\cos x + x^{2}\cos x + x \sin x}{(1+x)^{2}}$$
Chain Rule!
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Power Rule Combined with Chain Rule!

$$\frac{d}{dx}(u^n) = n u^{n-1} \frac{du}{dx}.$$

Alternatively,
$$\frac{d}{dx} \left[g(x) \right]^n = n \left[g(x) \right]^{n-1} g'(x)$$

(i)
$$y = (x^3 - 1)^{100}$$
 (ii) $y = \frac{1}{(t^4 + 1)^3}$

soln (i) Given:
$$y = (x^3 - 1)^{100}$$

$$\frac{dy}{dx} = 100 (x^{3}-1)^{99} \frac{d}{dx} (x^{3}-1)$$

$$= 100 (x^{3}-1)^{99} (3x^{2})$$

$$\frac{dy}{dx} = 300 x^{2} (x^{3}-1)^{99}$$

(ii) Given:
$$y = \frac{1}{(t^4+1)^3} = (t^4+1)^3$$

$$\frac{dy}{dz} = -3(t^4+1)^{-4}\frac{d}{dt}(t^4+1)$$

$$= -3(t^4+1)^{-4}(4t^3)$$

$$\frac{dy}{dx} = -12t^{3}(t^{4}+1)$$

2.
$$y = \cos(x^2)$$

$$\frac{dy}{dx} = -\sin(x^2) \frac{d}{dx}(x^2)$$

$$=-\sin^2(2\pi)$$

$$y' = -2x \sin^2 x$$

Differentiation Formulas:

Integration Formulas:

1.
$$\frac{d}{dx}(x) = 1$$

$$1. \int 1 dx = x + C$$

$$2. \frac{d}{dx}(ax) = a$$

$$2. \int a \, dx = ax + C$$

$$3. \frac{d}{dx}(x^n) = nx^{n-1}$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$4. \frac{d}{dx}(\cos x) = -\sin x$$

$$4. \int \sin x \, dx = -\cos x + C$$

$$\frac{x}{d}$$
 $\frac{d}{d}$
 $\frac{d}{d}$
 $\frac{d}{d}$

$$\int \sin x \, dx = \cos x + C$$

$$5. \int \cos x \, dx = \sin x + C$$

$$5. \frac{d}{dx}(\sin x) = \cos x$$

$$6. \int \sec^2 x \, dx = \tan x + C$$

$$6. \frac{d}{dx}(\tan x) = \sec^2 x$$

$$\int_{-\infty}^{\infty} a_n du = -\cot u + C$$

$$7. \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$7. \int \csc^2 x \, dx = -\cot x + C$$

8. $\int \sec x(\tan x) \, dx = \sec x + C$

8.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

9.
$$\int \csc x(\cot x) \, dx = -\csc x + C$$

$$\frac{dx}{dx}(\sec x) = \sec x \tan x$$

9.
$$\frac{d}{dx}(\csc x) = -\csc x(\cot x)$$

$$10. \int \frac{1}{x} dx = \ln|x| + C$$

10.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
11.
$$\frac{d}{dx}(e^x) = e^x$$

$$11. \int e^x dx = e^x + C$$

$$11. \frac{d}{dx}(e^x) = e^x$$

$$11. \int e^x dx = e^x + C$$

$$\frac{d}{dx} \left(a^{x} \right) = \left(\ln a \right) a^{x}$$

12.
$$\int a^x dx = \frac{a^x}{\ln a} + C \ a > 0, \ a \neq 1$$

$$12. \frac{d}{dx}(a^x) = (\ln a)a^x$$

13.
$$\int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C$$
14.
$$\int \frac{1}{\sqrt{1 - x^2}} dx = \tan^{-1} x + C$$

13.
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

14.
$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

14.
$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$$

15. $\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}$

$$\int \frac{1+x^2}{|x|} dx = \sec^{-1}x + C$$

Limit of a function A function f(x) tends to a definite limit las lends to a, if the difference between fix) and l Can be made as small as we like by making x approach Sufficiently near a and we write

$$\lim_{x \to a} f(x) = L$$

Left-hand limit of f(x) The left-hand limit of f(x) as x approaches a is equal to L. (io) $\lim_{x\to a} f(x) = L$.

Here x > ā means x < a.

Right-hand limit of f(x)The Right-hand limit of f(x) as x approaches a is equal to L.

(iv)
$$\lim_{x\to a^{\dagger}} f(x) = L$$

Here a -> at means a>a.

Infinite Limits

1.
$$\lim_{x \to \tilde{a}} f(x) = \infty$$

2.
$$\lim_{x \to a^{\dagger}} f(x) = \infty$$

3.
$$\lim_{x\to a} f(x) = -\infty$$
 4. $\lim_{x\to a^+} f(x) = -\infty$.

Note:-

$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to \bar{a}} f(x) = L$ and $\lim_{x\to \bar{a}} f(x) = L$

1.
$$\lim_{x \to 1} \frac{2-x}{(x-1)^2}$$

Soln Given
$$\lim_{x \to 1} \frac{2-x}{(x-1)^2}$$

$$(=\frac{2-1}{(1-1)^2}=\frac{1}{0}$$

$$\lim_{x \to 1} \frac{2-x}{(x-1)^2} = \infty$$

2.
$$\lim_{x \to -\frac{1}{3}} \left(\frac{x+2}{x+3} \right)$$

2.
$$\lim_{\chi \to -3} \left(\frac{\chi + 2}{\chi + 3} \right)$$
 $\chi \to -3^{+} \Rightarrow \chi \text{ is close to } -3 \text{ but larger then } -3.$

50! $\chi \to -3^{+} \Rightarrow \chi \text{ is close to } -3 \text{ but larger then } -3.$

$$\chi \rightarrow -3^{+} \Rightarrow \chi$$
 is close in $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -3^{+} \Rightarrow \chi$. Let $\chi = -2.9$

Nr = $\chi + 2$ becomes positive $\chi \rightarrow -2.9 + 2 = -0.9 = -4$

Dr = $\chi + 3$ becomes positive $\chi \rightarrow -2.9 + 2 = -0.9 = -4$

Dr = $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi$ is close in $\chi \rightarrow -2.9$
 $\chi \rightarrow -3^{+} \Rightarrow \chi \rightarrow$

$$\frac{1100}{x \rightarrow -3} \frac{x+2}{x+3} = -0.$$

3. Find the Value of
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

$$\frac{1}{500} \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{(x - 1)}$$

$$= \lim_{x \to 1} (x + 1) = (1 + 1)$$

$$= 2$$

4. Find
$$\lim_{x\to 1} \frac{x^4-1}{x^3-1}$$

$$\frac{\chi \to 1}{\chi^{2} - 1} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} - 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} - 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{(\chi^{2} + 1)(\chi^{2} + 1)} = \lim_{\chi \to 1} \frac{(\chi^{2} + 1)(\chi^{2} + 1)}{($$

5. If
$$\lim_{x\to 1} \frac{f(x)-8}{x-1} = 10$$
, find $\lim_{x\to 1} f(x)$.

Solp. Given:
$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$$

$$\Rightarrow \lim_{x \to 1} \left(f(x) - 8 \right) \left(\frac{1}{x - 1} \right) = 10$$

$$\Rightarrow \lim_{x \to 1} \left(f(x) - 8 \right) \cdot \lim_{x \to 1} \left(\frac{1}{x - 1} \right) = 10$$

$$= \frac{\lim_{x \to 1} f(x) - 8}{x \to 1} = \frac{\lim_{x \to 1} (x - 1)}{x \to 1}$$

$$= \frac{10(1 - 1)}{x \to 1}$$

$$\Rightarrow \lim_{x \to 1} f(x) - 8 = 0$$

$$\frac{1}{x \rightarrow 1} f(x) = 8$$

$$\frac{\text{H.}\omega}{\text{M.}}$$
 1. Find $\frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$ Ans: 3.

Special limits

Ly lim
$$\frac{x^n - a^n}{x - a} = na^{n-1}$$
 for all Mational Value of n.

Ly lim
$$\frac{5in\theta}{\theta \to 0} = 1$$
 (θ is measured in Madians)

6. Evaluate
$$100$$
 $1+\cos 2x$ $x \rightarrow 7/2$ $(\pi-2x)^2$

Solp
$$\lim_{\chi \to \pi_{2}} \frac{1 + (052\chi)^{2}}{(\pi - 2\chi)^{2}} = \lim_{\chi \to \pi_{2}} \frac{2 \cos^{2}\chi}{(\pi - 2\chi)^{2}}$$

$$\lim_{\chi \to \pi_{2}} \frac{1 + (052\chi)}{(\pi - 2\chi)^{2}} = \lim_{\chi \to \pi_{2}} \frac{2 \sin^{2}(\pi_{2} - \chi)^{2}}{(\pi - 2\chi)^{2}}$$

$$\lim_{\chi \to \pi_{2}} \frac{2 \sin^{2}(\pi_{2} - \chi)^{2}}{2^{2}(\pi_{2} - \chi)^{2}}$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\pi_2 - \chi)}{\pi_2 - \chi} \right]^2$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{1}{2} \left[\frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)} \right]$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{\chi \to \pi/2} \frac{\sin(\chi - \pi/2)}{(\chi - \pi/2)}$$

$$= \lim_{$$

A function of is continuous at a if $\begin{array}{l}
x \to a \\
x \to a
\end{array} f(x) = f(a).$

Note: - If f is continuous at a, then

4 f(a) is should exist (that is, a is in the domain of f)

L> lim f(x) exists botto on the left and Hight.

L> lim f (x) = f(a).

1. Show that $f(x) = 3x^2 + 2x - 1$ is continuous at x = 2

Given: $f(x) = 3x^2 + 2x - 1$ 30/12

 $\lim_{x\to 2} f(x) = \lim_{h\to 0} f(2-h) = \lim_{h\to 0} \left[3(2-h)^2 + 2(2-h) - 1\right]$

$$=3(2)^{2}+2(2)-1$$

$$\lim_{x\to 2} f(x) = 15$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{h\to 0} f(2+h) = \lim_{h\to 0} \left[3(2+h)^{2} + 2(2+h) - 1 \right]$$

$$= 3(2)^{2} + 2(2) - 1$$

$$\lim_{\alpha \to a^{\dagger}} f(\alpha) = 15$$

$$\lim_{x\to 2^{-}} f(x) = f(2) = \lim_{x\to 2^{+}} f(x).$$

Hence, fix) is continuous at x=2.

2. Test the continuity of
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1}, & x \neq 1 \\ 1, & \alpha = 1 \end{cases}$$

50h
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - 1}$$

$$= \lim_{x \to 1} \frac{x(x - t)}{(x + 1)(x - t)}$$

$$= \lim_{x \to 1} \frac{x}{(x + 1)(x - t)}$$

$$= \lim_{x \to 1} \frac{x}{x + 1} = \lim_{t \to 1} \frac{x}{t + 1}$$

$$\begin{array}{ccc}
 &=& \frac{1}{2} \\
 &: f(1) = 1 \\
 &=& f(1)
\end{array}$$

$$\lim_{x \to 1} f(x) \neq f(1)$$

$$\lim_{x \to 1} f(x) \neq \lim_{x \to 1} f(x) = \lim_{x \to 1} f(x)$$

3 These the continuity of
$$f(x) = \begin{cases} e^x, & x < 0 \\ x^2, & n > 0 \end{cases}$$

$$\frac{doln}{dx \to 0} = \lim_{x \to 0} e^{x} = e^{0} = 1$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 = 0$$

$$\lim_{x\to \bar{0}} f(x) \neq \lim_{x\to 0^+} f(x) \text{ and}$$

4. Suppose
$$f$$
 and g are continuous functions such that $g(2) = b$ and $\lim_{x \to 2} \left[3f(x) + f(x)g(x) \right] = 3b$. Find $f(2)$.

50h.

Given:
$$\lim_{x \to 2} [3f(x) + f(x)g(x)] = 3b$$
, $g(2) = b$
 $\Rightarrow \lim_{x \to 2} [3f(x) + f(x)g(x)] = 3b$, $g(2) = 3b$
 $\Rightarrow \lim_{x \to 2} f(x) + \lim_{x \to 2} f(x)g(x) = 3b$
 $\Rightarrow \lim_{x \to 2} f(x) + f(2)g(2) = 3b$
 $\Rightarrow \lim_{x \to 2} f(2)[3+b] = 3b$
 $\Rightarrow \lim_{x \to 2} f(2)[3+b] = 3b$

$$\Rightarrow f(2)[3+b] = 3b$$

$$\Rightarrow 9f(2) = 3b$$

$$\Rightarrow 9f(2) = 3b$$

$$\Rightarrow f(2) = \frac{36}{9}$$

$$f(2) = 4$$

F For what Value of the constant b is the function f continuous on $(-\infty, \infty)$. $f(x) = \begin{cases} bx^2 + 2x, & x < 2 \\ x^3 - bx, & x \ge 2 \end{cases}$.

500. The given function f(x) is continuous on (-0,2) & (2,00).

 $\lim_{x\to 2} f(x) = \lim_{x\to 2} bx^2 + 2x$ Now

$$= b(2)^{2}+2(2)$$

$$\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} x^{3} - bx$$

$$=(2)^3-b(2)$$

f(x) is continuous at x=2.

$$\lim_{x\to 2} f(x) = \lim_{x\to 2^{+}} f(x)$$

$$\begin{array}{c} \chi \rightarrow 2 \\ \Rightarrow \\ 4b + 4 = 8 - 2b \\ \Rightarrow \\ 2 - 4 \end{array}$$

$$\Rightarrow \begin{array}{c} 4b+2b = 8-4 \\ \Rightarrow 4b+2b = 4 \end{array}$$

$$\Rightarrow \begin{array}{c} 4b+2b \\ 6b = 4 \\ \Rightarrow \begin{array}{c} b = 4 \end{array}$$

$$\Rightarrow b = \frac{4}{6}$$

$$b = \frac{2}{3}$$

6. For What Values of the Constant C' is the function f continuous on $(-\infty, \infty)$ $f(x) = \begin{cases} cx^2 + 2x, & x < 2 \\ x^2 - cx, & x > 2 \end{cases}$ at x = 2. 50/1 The given function f(x) is continuous on (-0,2) & $(2,\infty)$.

Now
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} c_{x^2+2x}$$

$$x \to 2$$

= $C(2)^2 + 2(2)$
= $4C + 4$

$$\lim_{x \to 2^{\pm}} f(x) = \lim_{x \to 2^{\pm}} x^{2} - cx$$

$$= (2)^{2} - c(2)$$

$$= 4 - 2c$$

fix) is continuous at x = 2.

$$f(x) = \lim_{x \to 2} f(x)$$

$$\frac{1}{x} = \lim_{x \to 2} f(x)$$

$$\Rightarrow 4c+4 = 4-2c$$

$$\Rightarrow 4c+2c = 4-4$$

$$\Rightarrow 6c = 0$$

$$\Rightarrow (c=0)$$

For what Value of the constant 'C' is the function f continuous on $(-\infty,\infty)$

$$f(x) = \begin{cases} cx^2 + 2x, & x < 2 \\ x^3 - cx, & x \ge 2 \end{cases}$$
Ans: $c = \frac{1}{3}$.

7. If
$$f(x) = \begin{cases} \frac{x^2-4}{x-2}, & x < 2 \\ ax^2-bx+3, & 2 \le x < 3 \end{cases}$$
 is continuous for $2x-a+b$, $x > 3$

all x. Find the value of 'a' and b'.

The given function f(x) is continuous for all Iteal ox. : f(x) is continuous at x=2, x=3. 50ln

$$\lim_{\chi \to 2} f(x) = \lim_{\chi \to 2} \frac{\chi^2 - 4}{\chi - 2}$$

$$\chi \to 2$$

$$\lim_{\chi \to 2} \frac{(x - \chi^2)(x + 2)}{\chi - \chi}$$

$$= \lim_{\chi \to 2} \frac{(x + 2)}{\chi - \chi}$$

$$= \lim_{\chi \to 2} (x + 2)$$

$$= \lim_{\chi \to 2} (x + 2)$$

$$= 2 + 2 = 4 \longrightarrow 0$$

$$\lim_{\chi \to 2^+} f(x) = \lim_{\chi \to 2^+} \alpha \chi^2 - b\chi + 3$$

$$\chi \to 2^+ h(2) + 3$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} ux = 0$$

$$= a(2)^{2} - b(2) + 3$$

$$= 4a - 2b + 3 \longrightarrow 2$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} ax^{2} - bx + 3$$

$$x \to 3$$

$$= a(3)^{2} - b(3) + 3$$

$$= a(3)^{2} - b(3) + 3$$

$$= a(3)^{2} - b(3) + 3$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 2x - a + b$$

$$= 2(3) - a + b$$

$$= b - a + b \longrightarrow \Phi$$

From (1) and (2),
$$4a-2b+3=4$$

$$4a-2b=4-3$$

$$4a-2b=1 \longrightarrow 5$$

From (3) and (4),
$$b-a+b = 9a-3b+3$$

$$10a-4b = b-3$$

$$10a-4b=3 \longrightarrow 6$$

Solving Band D, weget

$$10a - 4b = 3 \longrightarrow 3$$

$$4a - 2b = 1 \longrightarrow 8$$

$$(9-0) \Rightarrow \frac{2a=1}{a=1/2}$$
 is 8, we get

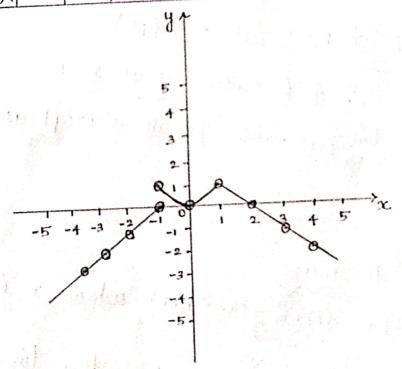
(14)

8. Sketch the graph of the function
$$f(x) = \begin{cases} 1+x, & x < -1 \\ x^2, & -1 \le x \le 1 \end{cases}$$
 and use let to determine.
$$2-x, & x \ge 1.$$

the value of a for which lim fix) exists.

Soln.

	(1)						1	+oc.	1	x2 0	
1+	x; x	4-1	11.1	χ^2 :	-1 = X	٤١	2-	χ^2 ;	x>1	1	
<u> </u>		-3	-4	-1	0	L	1	2.	3	4	
1	1				0	1	1	D	- 1	-2	
f(x):	-1	-2				1				nests increasing the second	



$$\lim_{x\to \bar{1}} f(x) = \lim_{x\to \bar{1}} (1+x) \longrightarrow f(\bar{1})$$

$$\frac{A+x=-1}{=0}$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \alpha^2 \implies f(-1)$$

$$= (-1)^2 = 1$$

$$\lim_{\chi \to -1^+} f(x) = \lim_{\chi \to -1^+} (-1)^2 = 1. \implies f(-1^+)$$
Here $f(-1^-) \neq f(-1) = f(-1^+)$

: f is discontinuous at x=-1.

$$\underbrace{At \ x=1} \qquad f(i) = \lim_{x \to i} f(x) = \lim_{x \to i} x^2 = (i)^2 = 1$$

$$f(1) = \lim_{x \to 1} f(x) = \lim_{x \to 1} x^2 = (1)^2 = 1$$

$$f(1^{+}) = \lim_{\chi \to 1^{+}} f(\chi) = \lim_{\chi \to 1^{+}} (2-\chi) = 2-1=1.$$

Here,
$$f(r) = f(1) = f(1+)$$

.. f is continuous at x=1.

Hence, lim f(x) exists for all a except at a=-1.

-0 ---

If $f(x) \leq g(x) \leq h(x)$ where $x \in \mathcal{C}$ near 'a' Squeeze theorem:

and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$.

Discontinuous!

A function f is discontinuous at a

number à g $\lim_{x\to a} f(x) \neq f(a)$.

PRIYADARSHINI ENGINEERING COLLEGE

(Listed in 2(f) & 12(B) Sections of UGC, Approved by AICTE, New Delhi, and Affiliated to Anna University, Chennai)

MA8151-ENGINEERING MATHEMATICS-I

UNIT-I DIFFERENTIAL CALCULUS

MULTIPLE CHOICE QUESTIONS

1.	The	Domain	of the	function	f(x	$=\sqrt{x+3}$
1	. 1 110	Dumam	or the	luncuon	$\mathbf{I}(\mathbf{\Lambda}$	$\mathbf{J} - \mathbf{V} \mathbf{A} + \mathbf{J}$

A)
$$(-\infty,\infty)$$

B)
$$[-3,\infty)$$

C)
$$[-2,\infty)$$
 D) $(-3,2)$

D)
$$(-3,2)$$

2. The Domain of the function
$$f(x) = \sqrt{4-x} - \sqrt{3+x}$$

B)
$$(-3,4]$$

3. The Domain of the function
$$f(x) = \frac{2x^2 - 5}{x^2 + x - 6}$$

A)
$$(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$$

B)
$$(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$$

$$C(-\infty,-2)\cup(-2,\infty)$$

D) None of the above

4.The function
$$f(x) = \frac{x}{x^2 + 1}$$
 is

A)Odd function ✓

B)Even function

C) neither odd nor Even

D) Not define

5. The function
$$f(x) = x|x|$$
 is

A)Odd function ✓

B)Even function

C) neither odd nor Even

D) Not define

6.The function
$$f(x) = \frac{x}{x+1}$$
 is

A)Odd function

B)Even function

C) Neither odd nor Even ✓

D) Not define

7. Which of the following statement is true?

- A) A function f(x) is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I \checkmark
- B) A function f(x) is called Decreasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I
- C) A function f(x) is called increasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 > x_2$ in I
- D) A function f(x) is called Decreasing on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 > x_2$ in I
- **8.The value of** $\lim_{x\to 2} (x^2 x + 2)$
 - A) 0

B) 6

- **C**) ∞
- D) 4 ✓

- **9.The value of** $\lim_{x \to 1} \frac{x^2 1}{x 1}$
 - A) 0

B) 6

- **C**) ∞
- D) 2 ✓

- **10.The value of** $\lim_{x\to 0} \frac{\sqrt{x^2+9} 3}{x^2}$
 - A) 0

B) $\frac{1}{9}$

- C) $\frac{1}{2}$
- D) $\frac{1}{6}$

- **11.The value of** $\lim_{x\to 0} \frac{9^x 5^x}{x}$
 - A) $\log \frac{9}{5}$ \checkmark B) $\log \frac{5}{9}$

- C) $\log \frac{1}{2}$
- D) ∞

- **12.The value of** $\lim_{x\to 0} \frac{|x|}{x}$
 - A) 0

B) 1

- C) $\log \frac{1}{2}$
- D) Does not exist ✓

- **13.** The value of $\lim_{x\to 0} \frac{|\sin x|}{\sin x}$
 - A) 0

B) 1 ✓

- C) $\log \frac{1}{2}$
- D) Does not exist

14. The value of $\lim_{x\to\infty}\frac{x^2+x}{x-3}$

٨	1	γ
\mathcal{A}	.)	

15. The value of $\lim_{h\to 0} \frac{(3+h)^2-9}{h}$

A)-
$$2$$

 $D) - \infty$

16. Which of the following statement is true According to Sequeeze theorem?

A) If
$$f(x) \le g(x) \le h(x)$$
 when x is near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

B) If
$$f(x) \le h(x) \le g(x)$$
 when x is near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

C) If
$$g(x) \le f(x) \le h(x)$$
 when x is near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

D) If
$$h(x) \le g(x)$$
 when x is near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$

17.Discuss the continuity of the function

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

- A) The function f is continuous at x = 2
- B) The function f is discontinuous at x = 2
- C) The function f is continuous Everywhere.
- D) The function f is discontinuous Everywhere.

18. The value of constant 'c' is the function continuous on $(-\infty,\infty)$

$$\mathbf{f(x)} = \begin{cases} cx^2 + 2x & \text{if } x < 2 \\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

A)
$$\frac{3}{5}$$

B)
$$\frac{5}{3}$$

C)
$$\frac{2}{3}$$

D) $\frac{4}{3}$

19. The value of a and b that makes the function continuous everywhere

$$\mathbf{f(x)} = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 \le x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$$

A)
$$a = \frac{3}{2}, b = \frac{1}{2}$$

B)
$$a = \frac{2}{3}, b = \frac{1}{2}$$

C)
$$a = \frac{1}{2}, b = \frac{1}{2}$$

D)
$$a = \frac{3}{2}, b = \frac{3}{2}$$

20.The value of constant 'c' is the function continuous on $(-\infty,\infty)$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2 \\ c & \text{if } x = 2 \end{cases}$$

21.If $f(x) = \sqrt{x}$, then the derivative of f(x) is

A)
$$\frac{1}{2}\sqrt{x}$$

B)
$$\frac{1}{2\sqrt{x}}$$
 \checkmark C) $\frac{1}{3\sqrt{x}}$

C)
$$\frac{1}{3\sqrt{x}}$$

D)
$$\frac{1}{\sqrt{x}}$$

22. If $f(x) = \cot x$, then the derivative of f(x) is

A)
$$\csc^2 x$$

B)
$$\sec^2 x$$

C)-
$$\csc^2 x$$

D)
$$-\sec^2 x$$

23. If $f(x) = x e^x$, then the derivative of f(x) is

A)
$$x e^x + x \checkmark$$

B)
$$e^x + x$$

C)
$$x - e^{x} + x$$

D)
$$x - x e^x$$

24. If $f(x) = (x^2 + \frac{1}{x^2}) \tan x$, then the derivative of f(x) is

A)
$$(x^2 + \frac{1}{x^2}) \sec^2 x$$

B)
$$(x^2 + \frac{1}{x^2})\sec^2 x + \tan x(2x - \frac{2}{x^2})$$

C)
$$(x^2 + \frac{1}{x^2})\sec^2 x + \tan x(2x + \frac{2}{x^2})$$

D)
$$(x^2 - \frac{1}{x^2})\sec^2 x + \tan x(2x - \frac{2}{x^2})$$

25. If $f(x) = \frac{2x}{4 + x^2}$, then the derivative of f(x) is

A)
$$\frac{6-2x^2}{(4+x^2)}$$
 B) $\frac{8-2x^2}{(4+x^2)}$

B)
$$\frac{8-2x^2}{(4+x^2)}$$

C)
$$\frac{6-2x^2}{(4+x^2)^2}$$

D)
$$\frac{8-2x^2}{(4+x^2)^2}$$

26.If $y = (1-x^2)^{10}$, then the derivative of y is

A)-
$$10x (1-x^2)^9$$

B)
$$-30x (1-x^2)^9$$

C)-40x
$$(1-x^2)^9$$

D)
$$-20x (1-x^2)^9$$

27. If y = tan(sinx), then the derivative of y is

A)-
$$\cos x \sec^2(\sin x)$$

B)
$$\cos x \sec^2(\sin x)$$

C)
$$\sin x \sec^2(\sin x)$$

D)
$$tanx sec^2(sin x)$$

28. The derivative of $y = \csc^{-1} x$ is

$$A) \frac{1}{x\sqrt{x^2} - 1}$$

A)
$$\frac{1}{x\sqrt{x^2-1}}$$
 B) $-\frac{1}{x\sqrt{x^2-1}}$ \checkmark C) $\frac{1}{x\sqrt{x^2+1}}$ D) $-\frac{1}{x\sqrt{x^2+1}}$

C)
$$\frac{1}{x\sqrt{x^2+1}}$$

D)
$$-\frac{1}{x\sqrt{x^2+1}}$$

29. If $f(x) = \frac{\sec x}{1 + \tan x}$, then the derivative of f(x) is

A)
$$\frac{\sec x(\tan x + 1)}{(1 + \tan x)^2}$$

B)
$$\frac{\sec x(\tan x + 1)}{(1 - \tan x)^2}$$

C)
$$\frac{\sec x(\tan x - 1)}{(1 + \tan x)^2}$$

D)
$$\frac{\sec x(\tan x + 1)}{(1 - \tan x)^2}$$

30. The derivative of $y = x^x$ is

A)
$$x^{x}$$
 (2+logx)

B)
$$x^x$$
 (1-logx)

C)
$$x^{x}(1+\log x)$$

D)
$$x^x$$
 (2-logx)

31. The derivative of $y = \operatorname{sech} x$ is

A) sechx tanhx

B)cosechx tanhx

C) -sechx tanhx ✓

D)- cosechx tanhx

32. The equation of tangent at a given point (x_1,y_1) is

A)
$$(x-x_1) = m (y-y_1)$$

B)
$$(y-y_1) = \frac{-1}{m}(x-x_1)$$

C)
$$(y-y_1) = \frac{1}{m}(x-x_1)$$

D)
$$(y-y_1) = m(x-x_1)$$

33.. The equation of normal at a given point (x_1,y_1) is

A)
$$(x-x_1) = m (y-y_1)$$

B)
$$(y-y_1) = \frac{-1}{m}(x-x_1)$$

C)
$$(y-y_1) = \frac{1}{m}(x-x_1)$$

D)
$$(y-y_1) = m(x-x_1)$$

34. The equation of tangent line to the curve $y=9-x^2$ at the point (2,1) is

A)
$$4x-y = 9$$

B)
$$4x+y = 9$$

C)
$$4x+y = 6$$

D)
$$3x + 2y = 6$$

35. The equation of tangent line to the parabola curve $y = x^2$ at the point (1,1) is

A)
$$2x - v = 1$$

B)
$$2x+y = -1$$

C)
$$2x-y = -1$$
 \checkmark D) $2x+2y = 1$

$$D)2x+2y=1$$

36. The equation of tangent line to the curve $xy = c^2$ at the point (a,b) is

A)
$$\frac{x}{b} + \frac{y}{a} = 1$$
 B) $\frac{x}{a} + \frac{y}{b} = 1$

B)
$$\frac{x}{a} + \frac{y}{b} = 1$$

C)
$$\frac{x}{a} + \frac{y}{b} = 2$$
 \checkmark D) $\frac{x}{a} - \frac{y}{b} = 2$

D)
$$\frac{x}{a} - \frac{y}{b} = 2$$

37. Which of the following statement is true?

Let c be a point in a domain D of a function f. Then f'(c) is the local maximum value if

A)
$$f(c) \le f(x)$$
 when x is near c

B)
$$f(c) \le f(x)$$
 for all x in D

C)
$$f(c) \ge f(x)$$
 when x is near c

D)
$$f(c) \ge f(x)$$
 for all x in D

38. Which of the following statement is true?

Let c be a point in a domain D of a function f. Then f'(c) is the Absolute minimum value if

A)
$$f(c) \le f(x)$$
 when x is near c

B)
$$f(c) \le f(x)$$
 for all x in D

C)
$$f(c) \ge f(x)$$
 when x is near c

D)
$$f(c) \ge f(x)$$
 for all x in D

39.The critical numbers of the function $f(x) = 5x^2 + 4x$ is

$$A) x = \frac{4}{5}$$

$$B) x = \frac{2}{5}$$

B)
$$x = \frac{2}{5}$$
 C) $x = -\frac{2}{5}$ V D) $x = -\frac{4}{5}$

40. The critical point	of the function $f(x) =$	$=2x^3-3x^2-36x$ is				
A) $x = 3, 2$	B) $x = -3.2$	C) $x = 3,-2$ ✓ D) $x = -3,-2$				
41. Suppose f^{11} is con	tinuous near c					
i)If $f'(c) = 0$ and f^{11}	> 0, then f has a local	maximum at c				
ii) If $f'(c) = 0$ and f^{11}	1 < 0, then f has a loca	l minimum at c its According to				
A) Rolle's theorem		B) Concavity Test				
C) First derivative Tes	t	D) Second derivative Test ✓				
42.In which interval t	the function $f(\mathbf{x}) = 3x^4$	$4 - 4x^3 - 12x^2 + 5$ is increasing				
A) $x < -1$		B) $-1 < x < 0$ and $x > 2$				
C) $0 < x < 2$		D) $(-\infty,\infty)$				
43. The critical point	of the function $f(x) =$	$\mathbf{x} + 2\mathbf{sinx}, 0 \le x \le 2\pi$				
$A) x = \frac{5\pi}{3}, \frac{7\pi}{3}$		B) $x = \frac{2\pi}{3}, \frac{4\pi}{3}$				
$C) x = \frac{\pi}{2}, \frac{3\pi}{2}$		$D) x = \frac{\pi}{3}, \frac{2\pi}{3}$				
44.The Absolute mini	mum value of the fu	inction f(x) = $x^3 - 3x^2 + 1$ is				
A)Minimum valu	e f(4) = 17	B)Minimum value $f(2) = 17$				

45.If f(2) = 10.where $f'(x) = x^2 f(x)$ for all x, then the value of $f^{11}(2)$ is

46.Afunction f is defined by f(x) = $\begin{cases} 1+x & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x \le 1 \text{ then the value of } \mathbf{f(-2)} \text{ is } \\ 2-x & \text{if } x \ge 1 \end{cases}$

B) 175

B) 3

D)Minimum value f(4) = -3

C) 165

C) -1 ✓

D) 200 ✓

D) 4

C)Minimum value f(2) = -3

A) 100

A)0

		on the closed interval $[a, b]$ = f(b), then $f'(c) = 0$ for s	and differentiable on the some c with $a \le c \le b$. it's
A)Langrange's m	nean value theore	m B)se	equeeze theorem
C)First derivative	e Test	D)F	Rolle's theorem ✓
48.Find the cons	$extant 'c' if f(x) = \frac{1}{2}$	$x^2 - 2x - 8$ on [-1,3] By usin	ng rolle's theorem
A) -8	B) 2	C) -1	D) 1 ✓
49.If $y = \sinh^{-1} x$	then $\frac{dy}{dx} =$		
A) $\frac{1}{\sqrt{1+x^2}} \checkmark$	B) $-\frac{1}{x\sqrt{x}}$	$\frac{1}{(x^2-1)}$ C) $-\frac{1}{\sqrt{x^2+1}}$	$D) - \frac{1}{x\sqrt{x^2 + 1}}$
50.If $\lim_{x \to 1} \frac{f(x) - 8}{x - 1}$	$= 10 \qquad \text{then } \lim_{x \to 1} f$	f(x)	
A) 8 🗸	B) 11	C) 16	D) 10
51. For the funct that $f'(c) = 0$.	$\mathbf{ion}\ \mathbf{f}(\mathbf{x}) = \mathbf{sin}(\mathbf{x})/2$	x ² How many points exist	in the interval $[0, 7\pi]$ Such
A) 8	B) 0	C) 7	D) 6 ✓
	e 1	l it is seen that the roots a t c and the root x?	re equal. Then what is the
A)c = x	$B) c = x^2$	C) They are independent	$D) c = \sin(x)$
B) Existence of p	point c where deri	he vative of a function become vative of a function is posit vative of a function is nega	rive

D) Existence of point c where derivative of a function is either positive or negative

B) Mean Value Theorem ✓

D) Leibnit'x Theorem

54. Rolle's Theorem is a special case of

A) Lebniz Theorem

C) Taylor Series of a function

if $f(x) = Sin(x)$ is corand $c \in (0,\pi)$	ntinuous over int	erval $[0,\pi]$ and differenti	able over interval	$(0,\pi)$
Α) π	B) ^π / ₂ ✓	C) ^{\pi} / ₆	D) */ ₄	
56. $f(x) = 3Sin(2x)$, i $(0,\pi)$ and $c \in (0,\pi)$	s continuous ove	r interval [0,π] and diffe	rentiable over interv	'al
Α) π	B) ^π / ₂ ✓	C) *\frac{1}{4}	D) *\bar{1}/8	
57. Evaluate $\lim_{x \to \infty} \frac{3x^5 - 7x^5}{-7x^5}$	$\frac{-4x^2+1}{+x^2+2}$			
A)-3/7 ✓	B)0	C)½	D)Undefined	
58. Evaluate $\lim_{x\to 0} (1+x)$	$\frac{1}{x}$			
A) e ✓	B)1	C)0	D)Undefined	
59. A value of c for v	which the Mean v	value theorem holds for t	he function	
$f(x) = log_e x$ on the	e interval [1, 3] is			
,	B) 12loge3	C) log ₃ e	D) log _e 3	
60. The value of c in A) 3/2 ✓	Mean value theo B) 2/3	orem for $f(x) = x(x - 2)$, x C) $\frac{1}{2}$	$x \in [1, 2] \text{ is}$ (D) 5/2	
61. The value of c in	Rolle's theorem	for the function, $f(x) = si$	in $2x$ in $[0, \pi/2]$ is	
A) $\pi/2$	B) π/4 ✓	C) $\pi/3$	D) π/6	
62. The value of c in	Rolle's Theorem	for the function $f(x) = e^{-x}$	$x \sin x, x \in [0, \pi]$ is	
A) $\pi/6$	B) π/4	C) π/2	D) 3π/4 ✓	
63. The value of c in	Mean value theo	orem for the function f(x)	$)=\mathbf{x}(\mathbf{x}-2),$	
$x \in [1, 2] \text{ is}$ A) 32 \checkmark	B) 23	C) 12	D) 52	

55. Find the value of c(a point where slope of a tangent to curve is zero)

$3x^4 - 8x^3 + 12x^2 - 4$ A) -63, 257	18x + 1 on the interv B) 257, -40	val [1, 4]. C) 257, -63 ✓	D) 63, -257						
65.The equation of th	e normal to the cur	$\mathbf{ves} \ \mathbf{v} = \mathbf{sin} \ \mathbf{x} \ \mathbf{at} \ (0)$	0) is						
A) $x = 0$	_	C) y = 0	D) x - y = 0						
66.Find all the points	66.Find all the points of local maxima and local minima of the function								
$f(x) = (x-1)^3 (x +$	$(1)^2$								
A) 1, -1, -1/5 ✓	B) 1, -1	C) 1, -1/5	D) -1, -1/5						
67.If $y = x^3 + x^2 + x +$	1, then y								
A) has a local minim	ım	В) has a local maximum						
C) neither has a local) None of these						
			2						
69. Find the points of	inflection of the fun	$action f(x) = \sin 2x$	+ x ² on the						
interval $0 \le x \le \pi / 2$. A)0, $\pi / 4$	$P(0, \pi/2)$	C) # /6 5# /6	D) $\pi/12, 5\pi/12 \checkmark$						
A)0, π /4	\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}	$C) \pi / 0$, $S\pi / 0$	D) M 12, 3K/12 V						
70.Find the extreme v	values of the function	on & where they o	$\operatorname{ccur} \mathbf{f}(\mathbf{x}) = \mathbf{x}^2 + 2\mathbf{x} - 3$						
A) Absolute minim		B) Absolute minin							
C) Absolute minim		,	num is -4 at $x = -1$.						
71. The maximum and	l minimum values o	of $f(x)=2x^3-24x+4$	is						
A). max value=	17, min value =-28	B) a. max value=	36, min value =-28 ✓						
C). max value=	36, min value =-16	D). max value= 3	36, min value =-15						
72. Mean Value theor	em is also known a	S							
A) Rolle's Theo	rem	B) Lagran	ge's Theorem ✓						
C) Taylor Expar		· · · · · · · · · · · · · · · · · · ·	z's Theorem						
73 .The point of infle	$extion of f(x) = x^3 - 6x^2$								
A)x=1		B) x= 2 ✓							
C)x = -1	Conne(m)	D) None (of these						
74. Value of $\lim_{x\to 0}$		a 1	D)						
A) e ✓	B) 0	C) 1	. D) ∞						
75. The tangent to the									
	, , , ,	(-1) $(2, 0)$	D) (0, 2)						
76. The interval on w	B) [-2, -1] ✓								
77. Which of the follo	,	,	,						
A) sin 2x		C) cos x ✓	_						
11, 5111 2/1	D) wii A	C, 003 A	D) 000 3A						

64. Find both the maximum and minimum values respectively of

78. The function $f(x) = 1 - x^3$	$-x^5$ is decreasing	for				
A) $1 < x < 5$		B) $x < 1$				
C) $x > 1$	D) all values of $x \checkmark$					
79. The function $f(x) = x + \cos x$	s x is					
A) always increasing ✓		B) always d	_			
C) increasing for certain rai		D) None of				
80. The equation of the tanger	nt to the curve y =	$4 + \sin^2 x \text{ at } x = 0 \text{ i}$	S			
A) y = 2	B)y = 3	C) y = 4 ✓	D) $y = 6$			
81. Find the slope of $x^2y = 8$ a	t the point (2, 2)					
A) 2	B)-1	C) -1/2	D) -2 ✓			
82. Find the equation of the n	,	,	,			
A) y = 2x	$B)x = 2y \qquad \checkmark$	C) $2x + 3y = 3$	D) $x + y = 1$			
83. In the curve $2 + 12x - x^3$,	· · · · · · · · · · · · · · · · · · ·		, •			
A) (2, 18) and (-2, -14) ✓ C)(-2, 18) and (2, -14) 84. Locate the points of inflection	tion of the curve y	B) (2, 18) and (2, 18) and (-2, 18) and (-2, 18) $\mathbf{r} = \mathbf{f}(\mathbf{x}) = \mathbf{x}^2 \mathbf{e}^{\mathbf{x}}$.				
A)-2 $\pm \sqrt{3}$ 85. What is the equation of the		C) $-2 \pm \sqrt{2}$ very $x^2 + y^2 = 25$ at				
A) $5x + 3y = 0$ 86. The function $f(x) = x^3 - 6x$		C) 3x + 4y = 0	D)5x - 3y = 0			
A) a maxima at $x = 1$ and a min	imum at x=3 ✓					
B) a maxima at $x = 3$ and a min	imum at x=1					
C)No maxima butba minima at	x=1					
D) a maxima at $x = 1$ but no mix	nima					
87. The function $f(x) = 3x(x-2)$	has a					
A) minimum at x=1	✓	B) maximu	m at x=1			

C	minimum	at	$\mathbf{v}-2$
C)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	aı	X=2

88. If $f(x) =$	$ \chi$	in the interval	l	[-1,1]	1]	then	$\mathbf{f}(\mathbf{r})$	x))
-----------------	---------	-----------------	---	--------	----	------	--------------------------	----	---

- A) Satisfied all the conditions of Rolle's theorem
- B) Satisfied all the conditions of Mean value theorem
- C) Does not Satisfied all the conditions of Mean value theorem ✓
- D) None of these
- **89.** $\lim_{x\to 0} \frac{\sin^2 x}{x}$ is equal to
 - A)0 ✓

 $B) \infty$

C)1

- D)-1
- 90. The value of 'c' of the Mean value theorem for the function f(x) = x(x-2)when a=0, b=3/2 is
 - A)3/4 ✓
- B)1/2

C)3/2

- D)1/4
- 91. If f(x) = 3x4 4x2 + 5, then the interval for which f(x) satisfied all the condition of Rolle's Theorem is
 - A) [0, 2]
- B) [-1, 1] ✓

- **C**) [-1,0]
- D) [1, 2]
- 92. The greatest and least value of $f(x) = x^4 8x^3 + 22x^2 24x + 1$ in [0, 2] are
 - **A)** 0, 8
- B) 0, -8

- C) 1,8
- D) 1. -8 ✓
- 93. If a function is continuous at a point, then its first derivative
 - A) may or may not exist

B) exists always

C) will not exist

- D) has a unique value ✓
- 94. The value of ξ in the mean value theorem of $f(b) f(a) = (b a)f'(\xi)$ for $f(x) = Ax^2 + bx + C$ in (a, b) is
 - A) b + a B) b a
- C) $\frac{(b+a)}{2}$ \checkmark D) $\frac{(b-a)}{2}$

95. Which of the following is correct?
A) $f(a)$ is an extreme value of $f(x)$ if $f'(a)=0$
B) If f (a) is an extreme value of $f(x)$, then $f'(a) = 0$
C) If $f'(a) = 0$, then $f(a)$ is an extreme value of $f(x)$
D) All of these ✓
96 If $y + y = k$ $y > 0$ $y > 0$ then yy is maximum when

96. If x + y = K, x > 0, y > 0, then xy is maximum where

- A) x = ky B) kx = y C) x = y D) None of these

97. For second degree polynomial it is seen that the roots are equal. Then

what is the relation between the Rolle's point c and the root x?

- c) They are independent
- d) $c = \sin(x)$

98. Mean Value theorem is applicable to the

- A) Functions differentiable in closed interval [a, b] and continuous in open interval (a, b)
- B) Functions continuous in closed interval [a, b] only & having same value at point 'a' and 'b'
- C) Functions continuous in closed interval [a, b] and differentiable in open interval (a, b)
- D) Functions differentiable in open interval (a, b) only & having same value at point 'a' & 'b'

99. Mean Value Theorem tells about the

- A) Existence of point c in a curve where slope of a tangent to curve is equal to the slope of line joining two points in which curve is continuous and differentiable ✓
- B) Existence of point c in a curve where slope of a tangent to curve is equal to zero
- C) Existence of point c in a curve where curve meets y axis
- D) Existence of point c in a curve where curve meets x axis

100. Find the point c in the curve $f(x) = x^3 + x^2 + x + 1$ in the interval [0, 1] where slope of a tangent to a curve is equals to the slope of a line joining (0,1)

- A) 0.64
- B) 0.54 ✓
- C) 0.44

D) 0.34

Definition! -

Let oc be a number in the domain D of a function f. Then f(c) is the

4) absolute maximum value of f on D if $f(c) \nmid f(x)$ for all x in D.

4 absolute minimum Value of f on D if $f(c) \leq f(x)$ for all $x \in D$.

Definition! - The number f(c) is a Ly Local mascimum Value of fif f(c) > f(x)

4 local Minimum Value of f if f(c) & f(x) when och near C.

Extreme Value Theorem: If f is continuous on a closed interval [a,b] then f attains an absolute maximum value f(c) and absolute minimum value f(d) at some numbers C and d in [a,b].

If f has a local maximum or minimum Fermat's theorem: at c, and if f'(c) exists, then f'(c) = 0

A Cricital number of a function of is a number c in the domain of f such that either f'(c) = 0 (or) f'(c) does not exist.

If f has a local maximum or minimum at c, Definition! then C is a Cricital number of f.

1. Find the Critical Value of the function f(x)= 5x2+4x.

Given: $f(x) = 5x^2 + 4x$ 50/0

Critical Values of f occur at f'(x) = 0

$$f'(x) = 5(2x) + 4(1)$$

= 10x+4

$$=10x+4$$

$$f'(x) = 0$$

$$\Rightarrow 10x + 4 = 0$$

$$\Rightarrow 10x = -4$$

$$\Rightarrow$$
 $\log = -4$

$$\Rightarrow x = \frac{-4}{10} = \frac{-2}{5}$$

.. The Critical Values are $\alpha = -2/5$

2. Find the Critical Values of
$$g(x) = 2x^3 - 3x^2 - 36x$$
.

50/19. Awen:
$$g(x) = 2x^3 - 3x^2 - 36x$$

$$g'(x) = 2(3x^2) - 3(2x) - 36(1)$$
$$= 6x^2 - 6x - 36$$

$$\begin{array}{l} \therefore g'(x) = 0 \\ \Rightarrow bx^2 - bx - 3b = 0 \\ \Rightarrow b(x^2 - x - b) = 0 \\ \therefore x = -2,3 \end{array}$$

.. The Critical Values are x = -2,3

3. Find the Critical Values of
$$f(x) = x^2 - 32\sqrt{x}$$
.

Solp Given:
$$f(x) = x^2 - 32\sqrt{x}$$

$$f'(x) = 20(-3x)(\frac{1}{21x})$$

$$= 2x - 16(1/2x)$$

$$= 2(x - 8/12)$$

:.
$$f'(x) = 0$$

=> 2 (x - 8/1/x) = 0

$$\Rightarrow x - 8/x = 0$$

$$\Rightarrow x = 8/x \Rightarrow x^2 = 8/x$$

$$\Rightarrow x = 64 \Rightarrow x = 4, -2$$

=>
$$\chi^3 = 64$$
 => $\chi = 4$, $-2 \pm i(3.464)$

The Critical Value are x = 4 (only Heal numbers)

golo.
$$\frac{g_{\text{olo}}}{g_{\text{olo}}}$$
: $f(x) = 2 \cos \theta + 3 \sin^2 \theta$.

$$f'(x) = -2 \sin \theta + 2 \sin \theta \cos \theta$$
 $\sin^2 \theta = 2 \sin \theta \cos \theta$

:
$$f(x) = 0$$

=> $-2 \sin\theta + 2 \sin\theta \cos\theta = 0$
-2 $\sin\theta [1 - \cos\theta] = 0$

5. Find the absolute Maximum and minimum Value of $f(x) = x^3 - 3x^2 + 1$, $-\frac{1}{2} \le x \le 4$ (or) $[-\frac{1}{2}, 4]$.

$$f(x) = 2 - 3x + 1$$
, $-1/2 \le x \le 4$.

$$f'(x) = 3x^2 - 3(ax)$$
$$= 3x^2 - bx$$

$$f'(x) = 0$$

$$\Rightarrow 3x^2 - 6x = 0$$

$$\Rightarrow 3x(x-2)=0$$

$$x=0, x-2=0$$

.. The critical values are x=0,2

Ä	The	Critic	41	-		0	1
T	~ .	-1/	0	١	2	3	T
1	x :	12.]	1	(-3)	1	(7)
1	f(x):	18	1				
- 1		Name and Address of the Owner, where the Owner, which the		No.			1

f(4) = 17 is the absolute maximum Value of f f(2) = -3 is the absolute minimum value of f.

6. Find the absolute max. and Mini. Value of
$$f(x) = \log (x^2 + x + 1)$$
, [-1,1].

Given:
$$f(x) = \log (x^2 + x + 1)$$
, $[-1, 1]$
 $f'(x) = \frac{1}{x^2 + x + 1} (2x + 1)$

$$f'(x) = 0$$

$$\Rightarrow \frac{2x+1}{x^2+x+1} = 0$$

$$\Rightarrow 2x+1=0$$

$$\Rightarrow 2x=-1 \Rightarrow x=-1/2.$$

The critical value $x = -\frac{1}{2}$

. ,	e Cittie				
7	9¢ :	-1	-1/2	0	1
	-f (x):	O	0.75	D	0.477

f(-1/2) = 0.75 is the absolute maximum Value of f f(-1) = 0 is the absolute minimum Value of f.

7. Find the absolute Max. and Min. Value of $f(x) = 2 \cos x + \sin 2x$, $[0, \pi/2]$.

50lp.

Given:
$$f(x) = 2 \cos x + \sin 2x$$

$$f'(x) = -2 \sin x + 2 \cos 2x$$

$$f'(x) = 0$$

$$= > -25 \text{ in } x + 2 \cos 2x = 0$$

$$=>$$
 $\cos 2x = \sin x$

... The Critical Value= 1/6.

f(7/6)=3/2+3 is the absolute Max: Value of f.

f(1/2) = 0 is the absolute mini. Value of f.

8. For the function
$$f(x) = 2x^3 + 3x^2 - 36x$$
.

- (i) Find the Critical Points
- (ii) Find the intervals on which it is increasing or
- (iii) Find the local maximum and Minimum Values of f.
- (iv) Find the intervals of Concavity and the inflection points.

Soln (i) given
$$f(x) = 2x^3 + 3x^2 - 36x$$
.

$$f'(x) = 2(3x^{2}) + 3(2x) - 3b(1)$$
$$= 6x^{2} + 6x - 3b$$

$$f'(x) = 0$$
=> $6x^2 + 6x - 36 = 0$
=> $6x^2 + 6x - 6 = 0$
=> $6x^2 + 6x - 6 = 0$

.. The critical points are x=-3, 2

Interval sign of f'(x) Behavior of f(x)(-00,-3)

+ increasing speak f(x)decreasing beak f(x)increasing f(x) f(x)

(iii) Here f(-3) = 81 is a local maximum Value at x = -3. f(2) = -44 is a local minimum value at x = 2.

(iv)
$$f''(x) = b(2x) + b(1)$$

= 12x + b

$$f''(x) = 0$$

$$\Rightarrow 12x + 6 = 0$$

$$\Rightarrow 12x = -6$$

$$\Rightarrow x = -\frac{1}{2}$$

$$\Rightarrow x = -\frac{1}{2}$$

$$\Rightarrow x = -\frac{1}{2}$$

$$\frac{1}{2} - \frac{1}{2} = 0$$

$$2x = -1$$

$$f''(x) = 12x + 6$$

$$f(-1) = -6/6 \quad f''(0) = 6/6$$

Intervo	al Sign	of $f''(x)$	Behavior	
(-0,-!	12)		•	downward
(-1/2)	ω) (ω	+	Concave	upward.

Here inflaction point at
$$(-1/2, f(-1/2)) = (-1/2, 37/2)$$

$$\therefore f(-1/2) = 2(-1/2)^3 + 3(-1/2)^2 - 3b(-1/2)$$

$$= 2(-1/8) + 3(1/4) + 36/2$$

$$= -1/4 + 3/4 + 18$$

$$= -1+3 + 18$$

$$= 2/4 + 18$$

$$= 2/4 + 18$$

$$= 1/2 + 18$$

$$= 1/2 + 18$$

$$= 1/2 + 18$$

$$= 1/2 + 18$$

$$= 1/2 + 18$$

St. JOSEPH'S COLLEGE OF ENGINEERING

We Make You Shine

St. JOSEPH'S INSTITUTE OF TECHNOLOGY

St. Joseph's Group of Institutions **Jeppiaar Educational Trust**

OMR, Chennai - 119.

MULTIPLE CHOICE QUESTIONS

Subject Name: Engineering Mathematics-I Subject Code: MA8151

Year: I Year (All Branches) Semester: I

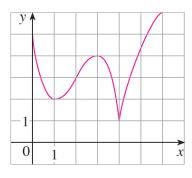
Assignment - II

UNIT I - DIFFERENTIAL CALCULUS

	Differential Calculus-Functions
1	The domain of the function $f(x) = 2x - 1$ is
	a) $[0,\infty)$ b) $(-\infty,\infty)$ c) $(-\infty,0]$ d) None of these
2	Which one of the following is the domain of the function $f(x) = \sqrt{3-x} - \sqrt{2+x}$.
	a) $[-2,3]$ b) $[2,3]$ c) $(-\infty,3]$ d) $(-\infty,\infty)$
3	The domain and range of the function $f(x) = \sqrt{4-x^2}$ are
	a) Domain: $-2 \le x \le 2$ & Range: $0 \le y \le 2$ b) Domain: $0 \le x \le 2$ & Range: $0 \le y \le 2$
	c) Domain: $-2 \le x \le 2$ & Range: $-2 \le y \le 2$ d) Domain: $0 \le x \le \infty$ & Range: $0 \le y \le \infty$
4	From the graphical representation of a function $y = f(x)$, the domain and range are a) Domain: $[0,\infty)$ & Range: $[0,\infty)$ b) Domain: $[0,7]$ & Range: $[-2,4]$
	c) Domain: $(-\infty,\infty)$ & Range: $(-\infty,\infty)$ d) None of these
5	Which one of the following function has the domain $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$?

- Which of the following function is not an even function? 6
- a) $x^2 + 1$ b) $\cos x$ c) $x^4 + x^2$ d) $x^3 + x$
- 7 Which of the following statements are true:
 - The function $x + x^2$ is an even function
 - The function e^{x^2} is odd function (ii)
 - a) (i) is true and (ii) is false
 - b) (i) is false and (ii) is true
 - c) Both are true
- d) Both are false
- Which one of the following is an increasing function over the real line R? 8

- a) f(x)=x+1 b) $f(x)=x^2$ c) f(x)=-x d) None of the these
- Which one of the following is decreasing function over $(-\infty,\infty)$? 9
 - a) y = |x|
- b) $y = \cos x$
- c) $y = \sin x$
- d) y = -x
- 10 From the graphical representation of a function y = f(x), The open intervals on which f(x) is increasing are



- a) (1,3), (4,6)
- b) (0,1), (3,4) c) (1,4), (5,6)
- d) None of these

Limit of a Function

- 11 The $\lim_{x\to 2} \frac{x^2 - 4}{x^2 + 4}$ is

 - a) 1 b) 0

- 12 Which of the following is the value of $\lim_{x\to 0} \frac{x}{x}$?
 - a) 1
- b) 0
- c) -1
- d) ∞

- The $\lim_{x\to\infty} \frac{4-x^2}{x^2-1}$ is 13
 - a) 1
- b) 0
- c) -1
- d)
- 14 The value of $\lim_{x\to 0} \frac{\tan x}{x}$
 - a) 0
- b) 1
- c) ∞
- does not exist

The $\lim_{x\to 0} \frac{1-\cos x}{x}$ is equal to
a) 1 b) 0 c) -1 d) 2
The value of $\lim_{x\to\infty} x^2 \sin\frac{1}{x}$
a) 0 b) 1 c) ∞ d) does not exist
If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then
$\lim_{x \to a} g(x) = L.$
a) Sandwich theorem b) Fermat's theorem
c) Extreme value theorem d) Mean value theorem
Which of the following is the value of $\lim_{x\to 0} \frac{\sin x}{x^2 + 3x}$?
a) 1 b) 0 c) ∞ d) $\frac{1}{3}$
Which of the following is the limit of a function yields limit value 5?
a) $\lim_{x \to \infty} \frac{e^x - 1}{x^5}$ b) $\lim_{x \to 0} \frac{e^{5x} - 1}{x^5}$ c) $\lim_{x \to 0} \frac{e^{5x} - 1}{x}$ d) $\lim_{x \to 0} \frac{5e^{5x} - 1}{x}$
Which of the following is the value of $\lim_{x\to 0} \frac{ x }{x}$?
a) 0 b) 1 c) ∞ d) does not exist
Continuity of a Function
A function $f(x)$ is said to be continuous at x_0 for $x \in R$, if
(i) $f(x_0)$ is defined
(ii) $\lim_{x \to x_0} f(x) \text{ exists } (i.e) \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$
(iii) $\lim_{x \to x_0} f(x) = f(x_0)$
a) (i) and (ii) holds b) only (ii) holds c) only (iii) holds d) (i), (ii) and (iii) holds
A function $f(x)$ is said to be not continuous at x_0 for $x \in R$, if
(i) $f(x)$ is not defined at x_0
(ii) $\lim_{x \to x_0} f(x)$ does not exists
(iii) $\lim_{x \to x_0} f(x) \neq f(x_0)$
a) all the Above holds b) only (ii) holds c) only (iii) holds d) only (i) and (ii) holds
A function $f(x)$ is said to be continuous for $x \in R$, if
a) it is continuous at $x = 0$ b) differentiable at $x = 0$ c) continuous at two points d) differentiable for $x \in R$

24	The function $f(x) = \frac{1}{x-5}$ for $x \in R$
	a) continuous at $x = 5$ b) not continuous at $x = 5$
	c) continuous everywhere d) nowhere continuous
25	The function $f(x) = \frac{x^2 - 16}{x - 4}$, $x \ne 4$, for $x \in R$ is
	a) continuous everywhere b) not continuous at $x = 4$
	c) continuous at $x = 4$ d) nowhere continuous
26	The function $f(x) = 2x^2 + 1$ for $x \in R$ is
	a) continuous only at $x=0$ b) not continuous at $x=0$
	c) continuous on $\left(-\infty,\infty\right)$ d) nowhere continuous
27	Which of the following function has discontinuity at $x = 0$
	a) e^{x} b) $e^{\frac{1}{x}}$ c) $\sin x$ d) $x+5$
28	Which of the following function has discontinuity at $x = 3$
	a) $x-3$ b) $\cos x$ c) $\frac{1}{x-3}$ d) x^3+3
29	A function $f(x) = \begin{cases} x^2, & x < 0 \\ kx, & x > 0 \end{cases}$ is
	a) continuous everywhere b) nowhere continuous
	c) continuous at $x = 0$ d) not continuous at $x = 0$
30	Given functions $f(x) = \frac{x^2 - 4}{x - 2}$ and $g(x) = x + 2$, $x \in \mathbb{R}$. Then which of the following is correct?
	a) f is continuous at $x = 2$, g is continuous at $x = 2$
	b) f is continuous at $x = 2$, g is not continuous at $x = 2$
	 c) f is not continuous at x = 2, g is continuous everywhere. d) f is not continuous at x = 2, g is not continuous at x = 2
31	(, -
31	A function $f(x) = \begin{cases} \frac{\sin 5x}{3x} + \cos x & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$ for
	a) $k=1$ b) $k=\frac{8}{3}$ c) $k=-1$ d) $k=\frac{4}{3}$
32	
32	A function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x & \text{if } x \neq 0 \\ 2k & \text{if } x = 0 \end{cases}$ is continuous at $x = 0$ for
	a) $k=1$ b) $k=2$ c) $k=\frac{1}{2}$ d) $k=\frac{3}{2}$
33	Find the value of k , so that the function $f(x) = \begin{cases} kx^2 & \text{if } x < 1 \\ 4 & \text{if } x \ge 1 \end{cases}$ is continuous

	a) $k=2$ b) $k=3$ c) $k=4$ c) $k=-2$
_	, , , , , , , , , , , , , , , , , , , ,
34	For what value of the constant k , is the function $f(x)$ continuous at $x=0$ $f(x) = \begin{cases} \frac{kx}{ x }, & x < 0 \\ 3, & x \ge 0 \end{cases}$
	a) $k=3$ b) $k=-3$ c) $k=0$ c) $k=1$
35	Which of the following is true for the continuity of the function $f(x)$ is defined by
	$f(x) = \begin{cases} 1+x, & \text{if } x \le -2\\ 2-x, & \text{if } -2 < x \le 2.\\ 2x-4, & \text{if } 2 < x \end{cases}$
	 a) continuous at x = -2,2 b) continuous x = -2 and discontinuous at x = 2 c) continuous at x = 2 and discontinuous at x = -2 d) discontinuous at x = -2, 2
36	The functions $ x $ is
	a) continuous at $x = 0$ b) discontinuous at $x = 0$ c) continuous everywhere d) nowhere continuous
37	The function $f(x) = x-a $ is
	a) continuous everywhere b) nowhere continuous c) discontinuous at $x = a$ d) continuous at $x = a$
38	If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x } + \frac{1}{x}\right)} & x \neq 0 \text{ is then } f(x) \text{ is} \\ 0 & \text{if } x = 0 \end{cases}$
	a) continuous everywhere b) nowhere continuous
	c) continuous at $x = 0$ d) discontinuous at $x = 0$
	Derivative
39	The functions $ x $ is
	a) differentiable at $x = 0$ b) not differentiable at $x = 0$
	c) Everywhere continuous d) discontinuous at $x = 0$
40	The function $f(x) = x-a $ is
	a) differentiable at $x = a$ b) not differentiable at $x = a$
41	c) Everywhere continuous d) discontinuous at $x = a$
41	If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x } + \frac{1}{x}\right)} & x \neq 0 \text{ is then } f(x) \text{ is} \\ 0 & \text{if } x = 0 \end{cases}$
	a) differentiable at $x = 0$ b) not differentiable at $x = 0$
	c) Everywhere continuous d) discontinuous at $x = 0$
42	If $y = \cos(x^2)$ then its derivative is

	a) $y' = -\sin(x^2)$ b) $y' = 2x\sin(x^2)$ c) $y' = -2x\sin(x^2)$ d) $y' = -2\sin(x^2)$
43	If $f(x) = \frac{1}{\sqrt{x}}$, then derivative of $f(x)$ is
	a) $f'(x) = \frac{1}{2x\sqrt{x}}$ b) $f'(x) = \frac{1}{2\sqrt{x}}$ c) $f'(x) = \frac{2}{\sqrt{x}}$ d) $f'(x) = -\frac{1}{2x\sqrt{x}}$
44	The derivative of a function <i>f</i> at a point <i>x</i> is
	a) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ b) $f'(x) = \lim_{h \to 0} \frac{f(x-h) + f(x)}{h}$
	c) $f'(x) = \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$ d) $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$
	Tangent and Normal
45	The tangent line to the hyperbola $y = \frac{1}{x}$ at the point (1,1) is
	a) $x+y+2=0$. b) $x+y-2=0$. c) $x+y-4=0$. d) $x+y-1=0$.
46	Which of the following is the equation of the tangent line to the curve $y = f(x)$ at (x_1, y_1) ?
	a) $y + y_1 = m(x - x_1)$ b) $y + y_1 = m(x + x_1)$ c) $y - y_1 = m(x - x_1)$ d) $y - y_1 = \frac{1}{m}(x - x_1)$
47	What are the points on the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal?
	a) $(0,4), (\sqrt{3},-5), (-\sqrt{3},-5)$. b) $(4,0), (\sqrt{3},-5), (-\sqrt{3},-5)$.
	c) $(0,4), (\sqrt{3},5), (-\sqrt{3},-5)$. d) $(0,4), (5,\sqrt{3}), (-\sqrt{3},-5)$.
48	Which of the following is the equation of the normal line to the curve $y = f(x)$ at (x_1, y_1) ?
	a) $y - y_1 = \frac{1}{m}(x - x_1)$ b) $y + y_1 = m(x + x_1)$ c) $y - y_1 = m(x - x_1)$ d) $y - y_1 = -\frac{1}{m}(x - x_1)$
49	The equation of the normal line to the curve $y = x^4 + 2e^x$ at the point (0,2) is
	a) $x+y+2=0$. b) $x+2y-4=0$. c) $x+2y=-4$ d) $x-2y=-4$
	Rules of Derivatives
50	Which one of the following is the first derivative of $y = e^x \sin x$?
	a) $e^x \sin x$ b) $e^x (\cos x + \sin x)$ c) $e^x \sin x - \cos x$ d) None of these
51	The first derivative of $y = e^{e^x}$ is
	a) $e^{e^x}e^x$ b) e^{e^x} c) $e^{e^x}\log x$ d) None of these
52	The derivative of the function $f(x) = x^2(x+1)$
	a) $y' = 2x$ b) $y' = 3x^2$ c) $y' = 2x + 1$ d) $y' = 3x^2 + 2x$
53	Which one of the following is the derivative of the function $\left(\frac{2+z}{z^3}\right)$
-	-

	a) $\frac{6+2z}{z^4}$ b) $\frac{1}{3z^2}$ c) $\frac{-2z-6}{z^4}$ d) $\frac{3z^2-(z+2)}{z^6}$
54	The derivative of $f(x) = \frac{x}{\sin x}$ is
	a) $\frac{\sin x - \cos x}{\sin^2 x}$ b) $\frac{\sin x - x \cos x}{\sin^2 x}$ c) $\frac{\sin x + x \cos x}{\sin^2 x}$ d) $\frac{\sin x + x \cos x}{\sin x}$
55	The derivative of the given function $y = \tan^{-1} \left(\frac{\sqrt{1 - \cos x}}{\sqrt{1 + \cos x}} \right)$
	a) $\frac{1}{2}$ b) $\frac{3}{2}$ c) 1 d) 3
56	The derivative of the given function $xy = 2x + y$ is
	a) $\frac{2+y}{x+1}$ b) $\frac{2-y}{x+1}$ c) $\frac{2-y}{x-1}$ d) None of these
57	The $\frac{dy}{dx}$ of the function $y = \log x^3 + 5\log x^2$
	a) $\frac{13}{x}$ b) $3\log x - 10\log x$ c) $\frac{-13}{x}$ d) $\log \left(\frac{3x^2}{10x}\right)$
58	The $\frac{dy}{dx}$ of the function $y = (\sin x)^x$
	a) $(\sin x)^x [x \cot x - \log \sin x]$ b) $x \cot x + \log \sin x$
	c) $(\sin x)^x [x \cot x + \log \sin x]$ d) $\sin x [x \cot x + \log \sin x]$
59	What is $f'(6)$ if $f(x) = x\sqrt{2x-3}$
	a) 6 b) 5 c) 7 d) 8
60	Consider the velocity of a car $V = 2t^3 + 3t^2 - 2t$ what is the acceleration for $t = 2$? a) 28 b) 30 c) 16 d) 34
61	The derivative of the function $y = \sqrt{x + \sqrt{x} + \sqrt{x} + \dots + \infty}$
	a) $\frac{1}{2y+1}$ b) $\frac{1}{2y-1}$ c) $\frac{-1}{2y-1}$ d) $\frac{-1}{2y+1}$
62	What is the second derivative of the function $y = x^4 + 2x^3 - 10x^2 + 12$
	a) $4x^3 + 6x^2 - 20x$ b) $12x^2 + 6x - 20$ c) $12x^2 + 12x - 20$ d) $12x^2 + 12x$
63	Which one of the following is the first derivative of the function $x = a\cos^3 t$ and $y = a\sin^3 t$ a) $\tan t$ b) $\sin t$ c) $-\sin t$ d) $-\tan t$
64	If $y = \ln(e^x \ln x)$ then what is y'
	a) 1 b) $1 + \frac{1}{x}$ c) $\frac{1}{x}$ d) $\ln e^x$

65	What is $\frac{d^2y}{dx^2}$ for $x = ct$ and $y = \frac{c}{t}$
	a) $\frac{1}{ct^3}$ b) $\frac{2}{ct^3}$ c) ct^3 d) $-\frac{2}{ct^3}$
66	What is the differentiation of $e^{\sin^{-1}x}$ with respect to $\sin^{-1}x$
	a) $e^{\sin^{-1}x}$ b) $e^{\sin x}$ c) $\sin x$ d) $\sin^{-1}x$
	Derivatives of Trigonometric Functions
67	The derivative of $f(x) = -\cos ec\left(\frac{x}{2}\right)$ is
	a) $\sec^2\left(\frac{x}{2}\right)$ b) $2\cos ec\left(\frac{x}{2}\right)\tan\left(\frac{x}{2}\right)$ c) $\frac{1}{2}\cos ec\left(\frac{x}{2}\right)\cot\left(\frac{x}{2}\right)$ d) $-\cos ec^2\left(\frac{x}{2}\right)$
68	What is the derivative of $f(x) = -\sin x$?
	a) $-\sin x$ b) $-\cos x$ c) $\cos x$ d) $\sin x$
69	If the rate of change of derivative of $y = f(x)$ is $-\frac{1}{1+x^2}$, then y is
	a) $\cot x$ b) $-\cos ec^2 x$ c) $\tan x$ d) $\sec^2 x$
70	If $y(x) = \sec 4x$ then $y'(x)$ is
	a) $\cos ec4x$ b) $4\sec 4x \tan 4x$ c) $-4\cos ec4x \cot 4x$ d) $4\tan 4x$
71	What is $f'(x)$ given $f(x) = 4\tan\left(\frac{1}{2} - x\right)$?
	a) $4\sec^2\left(\frac{1}{2}-x\right)$ b) $-4\cos ec^2\left(\frac{1}{2}-x\right)$ c) $-4\sec^2\left(\frac{1}{2}-x\right)$ d) $4\cos ec^2\left(\frac{1}{2}-x\right)$
72	What is the derivative of $y = \cos(\sin x)$?
	a) $-\sin(\sin x)\cos x$ b) $\sin(\sin x)\cos x$ c) $\cos(\sin x)\sin x$ d) $\sin(\sin x)\sin x$
73	If $f(x) = \sin^3(2x)$ then $f'(x)$ is
	a) $3\cos 2x$ b) $3\sin 2x - 2$ c) $3\sin^2(2x)\cos 2x$ d) $6\sin^2(2x)\cos 2x$
74	What is the derivative of $\arctan \sqrt{e^x}$ at $x = 0$?
	a) $-\frac{1}{4}$ b) $\frac{1}{4}$ c) 0 d) 1
75	The derivative of $\sin \sqrt[3]{3x}$ is
	a) $(3x)^{\frac{2}{3}}\cos(3x)^{\frac{1}{3}}$ b) $3\cos\sqrt[3]{3x}$ c) $\frac{\cos(3x)^{\frac{1}{3}}}{(3x)^{\frac{2}{3}}}$ d) $\sin(3x)^{-\frac{2}{3}}\cos 3x$
76	What is the derivative of $y = \sec(x^2 + 2)$?
	a) $2x\cos(x^2+2)$ b) $-\cos(x^2+2)\cot(x^2+2)$ c) $2x\sec(x^2+2)\tan(x^2+2)$ d) $\cos(x^2+2)$

77	What is wife a procince and 2
77	What is y' if $y = \arcsin(\cos x)$?
	a) -1 b) -2 c) 1 d) 2
78	The derivative of $f(x) = \sinh x - \cosh x$ is
	a) $\sinh x + \cosh x$ b) $\cosh 2x$ c) $\sinh 2x$ d) $\cosh x - \sinh x$
79	What is the derivative of $y = \frac{\tan x}{2x - 3}$?
	a) $\frac{dy}{dx} = \frac{(2x-3)\sec x \tan x - 2\tan x}{(2x-3)^2}$ b) $\frac{dy}{dx} = \frac{(2x-3)\sec^2 x - 2\tan x}{(2x-3)^2}$
	c) $\frac{dy}{dx} = \frac{\sec^2 x - 2\tan x}{(2x - 3)^2}$ d) $\frac{dy}{dx} = \frac{(2x - 3)\cos ec^2 x - 2\tan x}{(2x - 3)^2}$
80	If $f(x) = \cosh\left(\frac{x}{3}\right)$ then $f'(x)$ is
	a) $\sinh\left(\frac{x}{3}\right)$ b) $\frac{1}{3}\sinh\left(\frac{x}{3}\right)$ c) $-\sinh\left(\frac{x}{3}\right)$ d) $\cosh\left(\frac{x}{3}\right)$
81	The derivative of $f(x) = \sinh 3x - \cosh 5x$ is
	a) $\sinh 3x - \cosh 5x$ b) $3\cosh 3x + 5\sinh 5x$ c) $3\cosh 3x - 5\sinh 5x$ d) $\sinh 3x + \cosh 5x$
A	bsolute Maximum and Minimum & Local Maximum and Minimum
82	A critical point of a function $f(x)$ is a point c in the domain of $f(x)$ such that either
	a) $f(c)=0$ or $f(c)$ does not exist b) $f'(c)=0$ or $f'(c)$ does not exist
	c) $f(c) = 0$ or $f'(c)$ does not exist d) None of these
83	It is given that at $x = 1$, the function $f(x) = x^4 - 62x^2 + ax + 9$ attains its maximum value on the
	interval [0,2]. Then the value of a is
	a) 100 b) 120 c) 200 d) None of these
84	The critical number of the function $f(x) = 6x^2 + 3x$ is
	a) $\frac{2}{3}$ b) $\frac{1}{4}$ c) $-\frac{1}{4}$ d) None of these
85	If $\frac{2}{5}$ is the critical number of a function $f(x)$, then $f(x)$ is
	a) $5x^2-4x$ b) $5x^2+4x$ c) $10x+4$ d) None of these
86	The critical number of the function $f(x) = x^3 - x^2 - x$ is
	a) 1,3 b) $-1,\frac{1}{3}$ c) $1,-\frac{1}{3}$ d) $-1,-3$
87	The absolute maximum value of $f(x) = (x^2 - 1)^3$ on $[-1,1]$ is
	a) 1 b) 0 c) 2 d) None of these
88	The absolute minimum value of $y = x^3 - 3x^2 + 1$ in $0 \le x \le 4$ is
	The absolute infilling value of $y = x = 3x + 1$ if $0 \le x \le 4$ is

	a) 1 b) 17 c) 3 d) -3
89	The absolute maximum value of $y = x^3 - 3x + 2$ in $0 \le x \le 2$ is
	a) 4 b) 6 c) 2 d) 0
90	If $f(x) = -(x-1)^2 + 10$, then the maximum value is
	a) 12 b) 10 c) 11 d) None of these
91	The extreme values if any of the function given by $f(x) = \sin 2x + 5$ is
	a) Maximum value 4 and minimum value 6
	b) Maximum value 6 and minimum value -6c) Maximum value 6 and minimum value 4
	d) Maximum value 4 and minimum value 4
92	The function $f(x) = x^3 + x^2 + x + 1$ as
	a) Maximum value b) Minimum value c) Extreme values d) No Extreme values
93	The stationary point of the function $f(x) = x^x, x > 0$ is
	a) $\frac{1}{e}$ b) e c) $-\frac{1}{e}$ d) $-e$
94	The function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing in
	a) $x < -1$ b) $-1 < x < 0$ c) $0 < x < 2$ d) None of these
95	The function $f(x) = x + 2\sin x$ is decreasing in
	a) $0 < x < \frac{2\pi}{3}$ b) $\frac{2\pi}{3} < x < \frac{4\pi}{3}$ c) $\frac{4\pi}{3} < x < 2\pi$ d) None of these
96	If $f(x) = \sin x - \cos x$, then interval in which function is decreasing in $0 \le x \le 2\pi$, is
	a) $\left[\frac{5\pi}{6}, \frac{3\pi}{4}\right]$ b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ c) $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$ d) None of these
97	Which of the following statement is not correct?
	a) The function $f(x) = 4x + 3, x \in R$ is an increasing function
	b) The function $f(x) = \log(\cos x)$ is increasing function for $\left[0, \frac{\pi}{2}\right]$
	c) The function $y = 4x - 9$ is increasing for all $x \in R$
	d) The function $f(x) = \sin x$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
98	The local minimum value of the function $f(x) = \sin^4 x + \cos^4 x$, $0 < x < \frac{\pi}{2}$ is
	a) $-\frac{1}{2}$ b) 2 c) $\frac{1}{2}$ d) -2
99	Let $f(x) = 2x^3 + 3x^2 - 36x$. Then the interval of concave downward is
	·

	a) $x < -\frac{1}{2}$ b) $x > -\frac{1}{2}$ c) both $x < -\frac{1}{2}$ and $x > -\frac{1}{2}$ d) None of these
100	Let $f(x) = 2 + 2x^2 - x^4$. Then the interval of concave upward is
	a) $x < -\frac{1}{\sqrt{3}}$ b) $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$ c) $x > \frac{1}{\sqrt{3}}$ d) None of these
101	Let $f(x) = x^4 - 4x^3$. Then the point of inflection is
	a) (0, 0) and (2, -16) b) (0, 1) and (2, 16) c) (1, 1) and (1, -16) d) (1, 1) and (2, 16)
102	Let $f(x) = x^2(6-x)$. Then the point of inflection is
	a) (16, 2) b) (1, 16) c) (-2, 16) d) (2, 16)
103	The points of inflection of the function $f(x) = x^4 - 12x^3 + 6x - 9$ on the interval $-2 \le x \le 10$ is
	a) $x = 0.6$ b) $x = 06$ c) $x = \pm 6$ d) $x = \pm 12$
104	The points of inflection of the function $f(x) = \sin 2x + x^2$ on the interval $0 \le x \le \frac{\pi}{2}$ is
	a) $0, \frac{\pi}{4}$ b) $0, \frac{\pi}{2}$ c) $\frac{\pi}{6}, \frac{5\pi}{6}$ d) $\frac{\pi}{12}, \frac{5\pi}{12}$

Differential Calculus

Representation of function: Function!

* A function of from a set D to a set E is a rule that assigns a unique element $f(x) \in E$ to each element x & D.

* The set D & all possible input values is Called the domain of the function.

* The Mange of f is the set of all Possible Values of f(x) as x Varies throughout the domain.

Real - valued functions:

A function whose domain and co-domain are subsets of the set of all Meal numbers is Known as Meal-valued function.

Explicit functions:

If x and y be so related that y can be expressed explicity interms x, then y is called explicit function of x.

Example: $y = x^2 - 4x + 2$.

Implicit functions:

If x and y be so related that y connot be expressed explicity in terms of x, then y is called implicit function of x.

Example! $x^3+y^3-3xy=0$.

Domain, Co-domain, Mange and image!

Let $f: A \rightarrow B$ then set A in called the domain of the function set B is called Co-domain.

The set of all the images of all the elements of A under the function for called the Mange of f and is denoted by f(A).

The Mange of f & f(A) = {f(x): x ∈ A?. clearly f(A) SB!

If XEA, YEB and Y=f(x), then y is called the image of x underf.

Graph of functions:

If f is a function with domain D, then its graph is the set of ordered Pairs $\{(x, f(x))/x \in D\}$

Pièce wise - defined functions:

The functions are described by using different formula's on different parts of ets domain, such function are called piècewise défined functions.

The Vertical line test for a function:

A Curve in the zy-plane is the graph of a

function of x if and only if no Vertical line intersects the curve more than once.

Even function!—

If a function y = f(x) is an even function of x if f(x) = f(x)

Odd function:

If a function y = f(x) is on odd function

If x = f(x) = -f(x).

1. Find the domain and Mange and sketch the graph of the function $f(x) = x^2$.

60ln Given: $f(x)=x^2$ $\Rightarrow y=x^2$

The given equation is a parabola

Ü		<i>V</i>							-
0	••		-2-	-1	D	- 1	7	•• '	0
Domain (x):	- 0	1				-=		-	m l
	-	1			0	1	4		00
			14	1 ,		1	1		
Range (y)	\sim		1		1		1_		لسا
		•	=		9.				

Here $x,y \in \mathbb{R}$ The Domain is $(-\infty,\infty)$ The 7large is $[0,\infty)$ $[:x^2,0]$ $[:x^2,0]$ $[-1,1) \otimes 1 + O(1,1)$ $[-1,1) \otimes 1 + O(1,1)$ $[-1,1) \otimes 1 + O(1,1)$

2. Find the domain and sketch the graph of the function

$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 1-x & \text{if } x \ge 0 \end{cases}$$

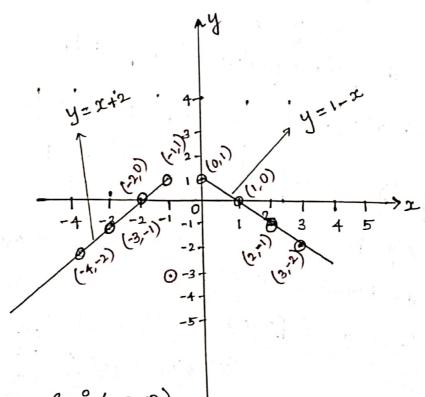
Solo. Given: $f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 1-x & \text{if } x > 0 \end{cases}$

(ie)
$$y = x+2, x < 0$$

 $y = 1-x, x > 0$

	`	,			
240	-1	-2	-3	-4	
y = x + 2	I	D	-1	- 2	
1 9 = 272					

x>0	0	. 1	2	3	
y= 1-x	١	0	-1	-2	
10					



The Domain is (-0,00).

3. Find the domain and Marge the function
$$f(x) = \frac{4}{3-x}$$
.

soln Given:
$$y = f(x) = \frac{4}{3-x}$$

$$(ig) y = \frac{4}{3-x}$$

$$y = f(x) = \frac{3}{3-x}$$

(ie) $y = \frac{4}{3-x}$ [:: Divison by zero not allowed]

Domain (x)	-02	-1	O	1	2	3	 4	 80
Range (y)	0 45	1	4/3	2	4 0	O N Đ	2	 •

Here
$$x,y \in \mathbb{R}$$
,
50, the domain $\mathring{v}(-\infty,3) \cup (3,\infty)$

4. Find the domain of the function
$$f(x) = \frac{x+4}{x^2-9}$$
.

Gwen:
$$f(x) = \frac{x+4}{x^2-9}$$

$$\Rightarrow y = \frac{x+4}{x^2-9}$$

$$\Rightarrow \alpha^2 - 9 = 0$$

$$\Rightarrow x^2 = 9$$

$$\therefore x = \pm 3$$

5. Find the domain of the function fix = Ja+2

Given:
$$f(x) = \sqrt{x+2}$$

$$\Rightarrow y = \sqrt{x+2}$$

$$y = \sqrt{x+2}$$

$$x+2>0 \qquad \left[: \text{Square That if a negative rumber is not diffined} \right]$$

$$x>-2$$

Even function:
$$f(-x) = f(x)$$

odd function:
$$f(-\alpha) = -f(\alpha)$$
.

6. Determine whether each of the following function in even, odd or neither even nor odd.

(i)
$$f(x) = x^2 + 1$$

bor. Given:
$$f(x) = x^2 + 1$$

$$f(-x) = (-x)^2 + 1$$

$$= x^{2}+1$$

$$\boxed{f(-x) = f(x)}$$

: f(x) is an even function

(ii)
$$f(x) = x \cos x$$
.

by: Given:
$$f(x) = x \cos x$$

$$f(-x) = (-x) \cos (-x)$$

$$= -x \cos x$$

$$f(-x) = -f(x)$$

.. f (xx) is an odd function.

$$(iii) \quad f(x) = x + 1$$

Solp.

Given:
$$f(x) = x+1$$

$$f(-x) = -x+1$$

$$f(-x) \neq f(x)$$

.: f(x) is neither even nor odd function.

7. Evaluate
$$f(x) = 4+3x-x^2$$
, $\frac{f(3+h)-f(3)}{h}$.

Solve Let $f(x) = 4+3x-x^2$

$$f(3+h) = 4+3(3+h)-(3+h)^2$$

$$= 4+9+3h-(9+h^2+6h)$$

$$= 4+9+3h-9-h^2-6h$$

$$= 4-3h-h^2$$

$$f(3) = 4 + 3(3) - (3)^{2}$$
$$= 4 + 9 - 9$$
$$f(3) = 4$$

$$\frac{f(3+h)-f(3)}{h} = \frac{1}{h} \left[4-3h-h^2-4 \right] \\
= \frac{1}{h} \left[-3h-h^2 \right] \\
= -\frac{h}{h} \left[3+h \right] \\
= -(3+h)$$

H.W 1. Find the domain of the function
$$f(x) = \frac{1}{\chi^2 - x}$$
.

3. If
$$f(x) = x^3 + x$$
 is odd or even function.

MA 8151 - ENGINEERING MATHEMATICS-I

UNIT-I

Differential Calculus.

1.1 Representation of functions:

Function:

A bunction f from a set D to a set E is a rule that assigns a uneque element $f(x) \in E$ to each element $x \in D$.

The set D of all possible input values is Called the domain of the function.

The range of f is the set of all possible values of f(x) as x varies throughout the domain.

Real -valued functions:

A function whose domain and Co-domain are subsets of the set of all real numbers is known as real-valued function. Explicit functions:

If x and y be so related that y (and be expressed explicity interms x, then y is called explicit function of x.

Ex: $y = x^2 - 4x + 2$.

Implicit bunctions:

Id x and y be so related that. y cannot be expressed explicitly in terms of x, then y is called implicit bunction of x. Eg: x8+y3-3xy=0.

Domain, co-domain, range and image;

Let $f: A \rightarrow B$ then

set A is called the domain of the function

set B is Called Co-domain

The set of all the images of all the elements of A under the function f is called the range co f and is denoted by flA).

The range of fis fla) = \flat flx): x \text{A} \frac{1}{3}

Clearly flA) SB.

If $x \in A$, $y \in B$ and y = f(x), then y is called

the image of & under f.

Graph of functions:

It f is a function with domain D, then its graph is the set of ordered pairs \$(x, f(x)) /x ED 4.

Piece wise - defined functions:

The bunctions are described by using different formula's on different parts of its domain, such bunctions are called Piece wise-d.f.

0

of a function of n ibb no vertical line intersects the Curve Mose than once.

Even function and odd function:

If a function y = f(x) is an even function of x if f(-x) = f(x) and odd function of x if f(-x) = -f(x) for every number x in its domain.

Problem based on the domain and range and sketch the graph of the bunction:

1. Find the domain and range and Sketch the graph of the function $f(x)=x^2$

Solution: Given: $f(x) = x^2$ => $y = x^2$

-	=>	Giv	en	equal	tion	13 4	e par	abda.	Doma	2n		
	Domain(x)	-00		-2	-1	0	1	2		∞		
	Range (y)	00		4	1 .	0	1	4		00		
	Here $x, y \in \mathbb{R}$. Range y_{1} y_{2} y_{3} y_{4} y_{5} y_{7} y_{7} y_{7} y_{7} y_{7}											
al	l real na Te Graph d	mber	s R.	ie, l-1	∞,∞)) -3	(-11) & -2 -1	1 - 0	(C(1))	3 2		

2. Find the domain and Sketch the graph of the function
$$f(x) = \int x + 2 ib \times 20$$

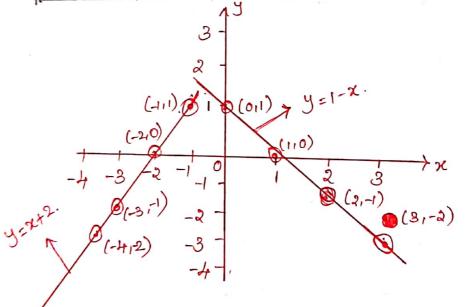
function
$$f(x) = \begin{cases} x+2 & \text{if } x \ge 0 \\ 1-x & \text{if } x > 0 \end{cases}$$

Solution:

Given: $f(x) = \begin{cases} x+2 & \text{if } x \ge 0 \\ 1-x & \text{if } x > 0 \end{cases}$

220	-1	– а	-3	-4	
y=x+2	1	0	-1	- 2	

x>o	0	1	ર	3	. , ,
Y=1-x	. 1	0	-1	-2	



:. The domain 15 (-0,00).

3. Find the domain and the range of each function
$$f(x) = \frac{4}{3-x}$$
.

Solution: Given: $f(x) = \frac{4}{3-x}$ $\Rightarrow y = \frac{4}{3-x} \quad (\text{divisor by zero is not allowed})$

	1111	11-1-	1111	111	1111	11111	1111	-	111111	Hold	1-1-1	1111
Domain -00	``,	-2	-1	0	,	2		3		4	.,,	∞
Range 0		4/5	1	4/3	2	4	ø	い・カ	-a0	-4	-	0

Here $\chi, y \in \mathbb{R}$, $N \cdot D \rightarrow Not$ defined. 50, the domain is $(-\infty, 3) \cup (3, \infty)$ and the range is $(-\infty, 0) \cup (0, \infty)$.

• 7. Find the domain of the function $f(x) = \frac{x+4}{x^2-9}$.

Solution: Given:
$$f(x) = \frac{\chi + 4}{\chi^2 - 9}$$

$$\Rightarrow y = \frac{\chi + 4}{\chi^2 - 9}$$

 $\Rightarrow \chi^2 - 9 = 0 \Rightarrow \chi = \pm 3.$

50 the domain is (-0,-3) U(-3,3) U(3,00).

• 5. Find the domain of the function $f(x) = \sqrt{x+x}$.

Solution: Given:
$$f(x) = \sqrt{x+2}$$

 $\Rightarrow y = \sqrt{x+2}$.

x+2 > 0 [: square noot 03 a negative number 95 not defined]

x>-2.

30 the domain ;3 [-2, ∞).

```
Even function: f(-x) = f(x)
   odd function: f(-x) = -f(x).
   Determine whether each of the function is even.
   odd or reither even nor odd.
   f(x) = x^2 + 1
1,
           Given: f(x) = x^2 + 1
                f(-x) = (-x)^2 + 1
                      = \chi^2 + 1
                 f(-x) = f(x)
         i. f(x) is an even function.
   f(x) = x \cos x.
2
            Given: fix) = x 68x
                  f(-x) = (-x) \cos(-x)
                         = -x 608x
                   f(-x) = -f(x)
       :. fix) is an odd function.
3. | f(x) = x+1
           Given: fix) = x+1
                  f(-x) = -x+1
                   f(-x) \neq f(x)
                   f(-x) = -(x-1)
                   f(-x) \neq -f(x)
        :. fix) is neither even nor odd function.
```

Evaluate the difference operation for the given function. 1. $f(x) = 4 + 3x - x^2$, f(3+h)-f(3)

1.
$$f(x) = 4 + 3x - x^2$$
, $\frac{f(3+h) - f(3)}{h}$

Solution: Griven:
$$f(x) = 4 + 3x - x^2$$

$$\frac{1}{f(3+h)} = 4 + 3(3+h) - (3+h)^2 = 4 + 9 + 3h - (9 + h^2 + 6h)$$

$$= -h^2 - 3h + 4$$

$$f(8) = 4 + 3(8) - (8)^2 = 4 + 9 - 9 = 4$$

$$\frac{f(3+h) - f(3)}{h} = -\frac{h^2 - 3h + 4 - 4}{h} = -\frac{h^2 - 3h}{h} = -3 - h.$$

1.
$$f(x) = x^3$$
, $f(a+h) - f(a)$ Ans: $h^3 + 3ah + 3a^2$

2.
$$f(x) = 2x^2 - 5x + 1$$
, $\frac{f(a+h) - f(a)}{h}$, $h \neq 0$.

5.
$$f(x) = 3x^2 - x + 2$$
, find $f(9)$, $f(-9)$, $f(9)$, $f(9)$ and $f(9)$, f

4.
$$f(x) = 1 - x^{4}$$
, $f(x) = x^{5} + x$, Check it even or cold.

5. Sketch the graph and bind the domain and range of the function
$$f(x) = 2x-1$$
.

6. Find the domain of the function
$$f(x) = \frac{1}{x^2 - x}$$
.

$$x^{\frac{1}{2}} = 0.$$
 $x(x-1) = 0$
 $x = 0, x = 1$
 $(-0, 0) (0, 1) (1, \infty),$

Definition:

 $\lim_{x\to a} f(x) = L \quad \text{ibb} \quad \lim_{x\to a} f(x) = L \quad \text{β $ \lim_{x\to a} f(x) = L$.}$

Infinite Linuits:

Let I be a function defined on both sides of a , except possibly at a itself. Then him f(x) = a mean that f(x) can be arbitrarily large by taking x sufficiently abse to a, but not equal to a.

Definition:

The line x = a is called a vertical asymptote of the curve fix) if at least one of the bollowing statements is true:

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} f(x) = -\infty \quad \lim_{x \to a} f(x) = -\infty.$$

Determine the infinite limit:

Lim
$$\frac{2-x}{(x-1)^2}$$

$$= \frac{2-1}{(1-1)^2} = \frac{1}{0}$$

$$\frac{2-x}{(x-1)^2} = 0$$

$$\frac{2-x}{(x-1)^2} = 0$$

NOTE: 2. $\lim_{x \to -5^+} \left(\frac{x+2}{x+5} \right)$ D they then do 2) -M -VE =00 3) +ve, -ve = -0 4) -ve, +ve = -00 Solution: Given: $\lim_{x \to -3} \left(\frac{x+2}{x+3} \right)$ 5) +VR = 10 6) -VP = -00. x -> -3" => x is close to -3" but larger than -3. NY = X+2 becomes regative Let X = - 2.9 Dx = x+3 becomes positive Nr = (-2.9+2 =-0.9=-12) DA=(-2.9+3=0.1=+ve) $\therefore \lim_{x \to -3} \frac{x+2}{x+3} = -\infty.$ Line x cosecx. Solution: Given: $\lim_{x \to (2\pi)} x \cos x = \lim_{x \to (2\pi)} \frac{x}{\sin x}$ x + (211) => x is close to 211 but smaller than 211 Nr = 2 becomes positive Dr = Sinx becomes negative [: sin290 = -ve] .. Lim x losec $x = -\infty$. 4. Line log (x=9) Given: Lim log (x=9) x+8 + x is close to 3 but larger than 3 log (x=9) becomes regative [: log[s.1)=9]=-ve] : Lim by (x2-9) = -0. 5. $\lim_{x \to 0^+} \left(\frac{1}{x} - \log x \right) = 0$ 6. $\lim_{x \to -3} \left(\frac{x+2}{x+3} \right) = \infty$

7. Sketch the graph of the banction
$$f(x) = \begin{cases} 1+x, & x \ge -1 \\ x^2, & -1 \le x \le 1 \end{cases}$$

[Jan : 2018, 2017]

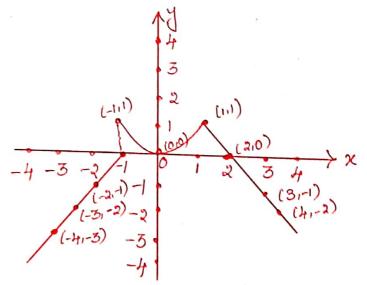
and use it to determine the values of a for which

Line fex) exists.

Solution:

	2	
1726	X	2-X.
-00		00
-	0	1

THE PERSON NAMED IN		1+2	Σ; χ.	2-1	x) j -14	x <)	ನಿ -	χ^2, χ	١ خ		
March Transcourse	χ	-2	-3	-4	-1	0	١	magaarin oliva 200 algang a said	2	3	4	100
STATE OF STREET	fix)	-1	-2	-3	1	0)	1	0	-1	-2	-



$$f(-1) = \lim_{x \to -1} f(x) = \lim_{x \to -1} (1+x) = 1-1 = 0$$

$$x \to -1 \qquad x \to -1$$

$$f(-1) = \lim_{x \to -1} f(x) = \lim_{x \to -1} x^{2} = (-1)^{2} = 1$$

$$f(-1)^{+} = \lim_{x \to -1} f(x) = \lim_{x \to -1^{+}} x^{2} = (-1)^{2} = 1$$

$$x \to -1^{+} \qquad x \to -1^{+}$$
Here, $f(-1) \neq f(-1) = f(-1^{+})$

$$f(-1) \neq f(-1) = f(-1^{+})$$

$$f(-1) \neq f(-1) = f(-1^{+})$$

$$f(-1) \neq f(-1) = f(-1^{+})$$

At x=1 $f(i^{-}) = \lim_{x \to i^{-}} f(x) = \lim_{x \to i^{-}} \chi^{2} = (i)^{2} = 1$ $f(1) = \lim_{x \to 1} f(x) = \lim_{x \to 1} x^2 = (1)^3 = 1.$ $f(1^{+}) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2-x) = 2-1 = 1.$ Here, $f(\bar{i}) = f(i^{\dagger}) = f(i^{\dagger})$: \therefore f is continuous at x=1. Hence, Line fix) existing for all a except at a=-1. 510x 0 112 110 Hw. 8. Sketch the graph of the function $f(x) = \begin{cases} 1+\sin x, & x \ge 0 \\ \cos x, & 0 \le x \le 1 \end{cases}$ which line f(x) exists. HSinx. LOSX SINX. Sin0=0 Elininating Zero Denominators Algebraically COS 0 = 1 Ib the denoncerator 95 zero, Cancelling Common factors in the numerator and denoncenator May reduce the fraction to one whose denominator is no longer xero at c. 1. Find $\lim_{x \to 1} \frac{x^2}{x-1}$ Solution: Given: $\lim_{x \to 1} \frac{x^2-1}{x-1}$

$$= \lim_{\chi \to 1} \frac{(\chi - 1)(\chi + 1)}{(\chi - 1)}$$

$$= \lim_{\chi \to 1} |\chi + 1| = 1 + 1 = 2.$$

$$\lim_{\chi \to 1} \frac{\chi^2 - 1}{\chi - 1} = 2.$$

$$\lim_{\chi \to 1} \frac{\chi^4 - 1}{\chi^3 - 1}$$

$$\text{Solution: Given: him } \chi^4 - 1$$

$$\frac{\chi+1}{\chi^{3}-1} = \frac{\chi^{2}-1}{\chi+1} = \frac{\chi^{2}-1}$$

3.
$$\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$$
: Ans: 3. $\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$: Ans: 3. $\lim_{x \to 1} \frac{\chi^2 + \chi - 2}{\chi^2 - \chi}$: Als: 4. The $\lim_{x \to 1} f(x) - 8 = 10$, $\lim_{x \to 1} f(x)$

4. If
$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$$
, find here $f(x)$ $\lim_{x \to 1} \frac{f(x) \cdot \theta(x)}{x - 1}$

Solution:
$$\frac{x+1}{x-1}$$
Solution:
$$\frac{f(x)-8}{x+1} = 10$$

$$= \lim_{x \to 0} \frac{f(x)}{x+1} = 10$$

$$\Rightarrow \lim_{x \to 1} f(x) - 8 = 10 \cdot \lim_{x \to 1} (x - 1) = 10(1 - 1) = 0$$

$$\therefore \lim_{x \to 1} f(x) = 8.$$

5. If
$$\lim_{x \to 0} \frac{f(x)}{x^2} = 5$$
, Find the following limits.

a) $\lim_{x \to 0} f(x)$, b) $\lim_{x \to 0} \frac{f(x)}{x}$.

Squeexe Theorem:

If
$$f(x) = g(x) = h(x)$$
 when $x = 6$ near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$.

1. Use the squeeze theorem, find the value of Lim $\chi^2 \sin(\frac{1}{x})$.

Solution: Given: Line
$$\chi^2 \sin\left(\frac{1}{\chi}\right)$$
.

W.K.T

 $-1 \leq \sin\left(\frac{1}{\chi}\right) \leq 1$
 $\Rightarrow -\chi^2 \leq \chi^2 \sin\left(\frac{1}{\chi}\right) \leq \chi^2$
 $\lim_{\chi \to 0} (-\chi^2) = \lim_{\chi \to 0} (\chi^2) = 0$
 $\Rightarrow \lim_{\chi \to 0} \chi^2 \sin\left(\frac{1}{\chi}\right) = 0$

[:By S.T].

2. Line
$$x^{4}$$
 cos $\left(\frac{2}{x}\right)$

3 dution: Given: $\lim_{x\to 0} x^{4} \cos\left(\frac{2}{x}\right)$

W. K.T, $-1 \leq \cos\left(\frac{2}{x}\right) \leq 1$.

$$\Rightarrow -x^{4} \leq x^{4} \cos(\frac{3}{x}) \leq x^{4}$$

$$\lim_{x \to 0} (-x^{4}) = \lim_{x \to 0} x^{4} = 0$$

$$\Rightarrow \lim_{x \to 0} x^{4} \cos(\frac{3}{x}) = 0 \quad [By \ S.7].$$

H.W.

3. Lim
$$\chi^2 \cos\left(\frac{1}{\chi^2}\right)$$

4.
$$\lim_{\chi \to 0} \sqrt{\chi^3 + \chi^3} \sin\left(\frac{\pi}{\chi}\right)$$
.

special Linuits:

1. Lim
$$\frac{x^n - a^n}{x - a} = n a^{n-1}$$
 for all rational values of n .

2. Lim
$$\frac{5^{\circ}n0}{0} = 1$$
 0 is Measured in radians.

2.
$$\lim_{n\to\infty} \frac{3^n n n}{6} = 1$$

bor all rational values of n .

3. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = 2$

1. Evaluate: Line
$$\frac{1+\cos 2x}{(\pi-2x)^2}$$
 Jan: 2016

Solution: Given:
$$\lim_{x \to \pi/2} \frac{1 + \cos 2x}{(\pi - 2x)^2} = \lim_{x \to \pi/2} \frac{2 \cos^2 x}{(\pi - 2x)^2}$$

$$= \lim_{x \to \pi/2} \frac{2 \sin^2 (\sqrt[3]{2} - x)}{2^2 (\sqrt[3]{2} - x)^2} = \lim_{x \to \pi/2} \frac{1}{2} \left[\frac{\sin (\sqrt[3]{2} - x)}{\sqrt[3]{2} - x} \right]^2$$

$$= \lim_{x \to \pi/2} \frac{1}{2^2 (\sqrt[3]{2} - x)^2} = \lim_{x \to \pi/2} \frac{1}{2} \left[\frac{\sin (x - \sqrt[3]{2})}{(x - \sqrt[3]{2})} \right]^2$$

$$= \lim_{x \to \pi/2} \frac{1}{2^2 (x - \sqrt[3]{2})} = \lim_{x \to \pi/2}$$

2. H.W. Find Lim (1+x) . [: put x=1/n]

1.3 Continuity: Continuous: A function f is Continuous at a number 'a' if $\lim_{x \to a} f(x) = f(a)$ Di scontinuous: A function if is discontinuous at a number 'a' if $\lim_{x \to a} f(x) \neq f(a)$. Right Limit: A function f' is continuous from the right at 'a' is $\lim_{x\to a^+} f(x) = f(a)$. Left Linuit: A bunction if is continuous from the left at a if $\lim_{x \to a} f(x) = f(a)$. a) Locate the discontinuity of the function: 1. Explain the function $f(x) = \begin{cases} \cos x, & i & i & x \neq 0 \\ \cos x, & i & x \neq 0 \end{cases}$ a = 0 is discontinuous at a. Solution: Given: $f(x) = \begin{cases} \cos x, & x < 0 \\ 0, & x = 0 \\ 1-x^2, & x > 0 \end{cases}$ $w \cdot k \cdot T$ $\lim_{x \to a} f(x) = f(a)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} \cos x = \cos 0 = 1$ f(0) = 0 $\therefore \lim_{x\to 0} f(x) \neq f(0).$: f(x) is distontinuous at 'a'.

Solution: Given:
$$f(x) = \frac{1}{1+e^{\sqrt{x}}}$$
.

Line $f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h)$

$$= \lim_{h \to 0} \frac{1}{1+e^{-\sqrt{x}}} = 1$$

$$\lim_{x \to 0} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h)$$

$$= \lim_{h \to 0} \frac{1}{1+e^{\sqrt{x}}} = 0$$

$$= \lim_{h \to 0} \frac{1}{1+e^{\sqrt{x}}} = 0$$

$$\lim_{x \to 0} f(x) = \frac{1}{1-e^{\sqrt{x}}} = 0$$

So $f(x)$ is discontinuous at $x = 0$.

3. Explain the function is continuous at 2.

a)
$$f(x) = x^{3} + 8$$
 [8] b) $f(x) = x^{2} + 7x + 10$ [-3]

a)
$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$
 [8] b) $f(x) = \frac{x^2 - 7x + 10}{x - 2}$. [-3]

Find the domain where the function f is continuous, Also find the numbers at which the function f is distontinuous, where $(u \cdot a - 2016, 2015)$

$$f(x) = \begin{cases} 1+x^2, & x \le 0 \\ 2-x, & 0 \le x \le 2 \\ (x-2)^2, & x > 2. \end{cases}$$

solution:

$$-\infty \leftarrow \frac{1+x^2}{0} \qquad 2-x \qquad (x-2)^2 \rightarrow \infty$$

At x=0, $\overline{f(0)} = \lim_{x \to 0} f(x) = \lim_{x \to 0} (1 + x^{2}) = 1 \to 0$ $f(\bar{o}) = \lim_{\chi \to \bar{o}} f(\chi) = \lim_{\chi \to \bar{o}} (1 + \chi^2) = 1 \to 0$ $f(o^{\dagger}) = \lim_{x \to o^{\dagger}} f(x) = \lim_{x \to o^{\dagger}} (a - x) = a \rightarrow \emptyset$ From O. &, B weget, $f(\bar{o}) = f(o) \neq f(o^{+}).$ 30 δ is continuous on the left at x=0f is discontinuous on the right at x=0. Hence, f is discontinuous at x=0. At $\chi=2$, $f(z) = \lim_{x \to z} f(x) = \lim_{x \to z} (z - x) = 0 \to 0$ $f(\bar{a}) = \lim_{x \to \bar{a}} f(x) = \lim_{x \to \bar{a}} (a - x) = 0 \rightarrow 0$ $f(\lambda^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x - \lambda)^{2} = 0 \to \emptyset$ From O, O, B weget, $f(a) = f(a) = f(a^{\dagger}).$ Hence f is continuous at x = 2. The domain of f is (-0,0) U(0,0). 5. Find the numbers that at which f is discontinuous, At which of numbers is f Continuous from the right from the left or reither? when $f(x) = \begin{cases} x+2, x \ge 0 & f(0) = 2 \\ e^{x}, 0 \le x \le 1 & f(0) = 1 \\ 2-x, x \ge 1 & f(0) = 1 \end{cases} \text{ at } x = 0, f(1) = e^{x} =$ b) function is continuous in a given interval:

1. Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1,1].

Solution:

$$\lim_{x \to -1^+} f(x) = 1 = f(-1); \lim_{x \to 1^-} f(x) = 1 = f(1).$$

2. suppose f and g are continuous functions such that g(x) = 6 and $\lim_{x \to a} \left[3 f(x) + f(x) g(x) \right] = 36$. Find f(x).

Solution: Criven:
$$\lim_{x \to 2} \int_{0}^{x} f(x) + f(x) g(x) = 36$$
, $g(x) = 6$.

$$\Rightarrow$$
 3 him $f(x) + \lim_{x \to 2} f(x) g(x) = 36.$

$$\Rightarrow f(a) [3+6] = 36 \Rightarrow f(a)(9) = 36$$

 $f(a) = 4.$

3. For what value of the constant C is the function

if continuous at
$$l-\infty,\infty$$
). [Jan: 2018]
$$f(x) = \int Cx^{2} + 2x, x = 2$$

$$\chi^{3} - Cx, x \geq 2.$$

Solution:

$$-\infty \leftarrow \frac{C\chi^{3}+2\chi}{2} \qquad \chi^{3}-C\chi \rightarrow \infty$$

At
$$x = 2$$
, criven: f is continuous.
 $\Rightarrow f(\bar{x}) = f(x) = f(x^{+}) \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{+}} f(x) = \lim_{x \to x^{+}} \left[x^{3} - cx \right] = 8 - 2c \cdot + 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^{-}} \left[cx^{2} + 2x \right] = 4c + 4 \rightarrow 0$
 $f(\bar{x}) = \lim_{x \to x^{-}} f(x) = \lim_{x \to x^$

5.

Show that f is continuous on $(-\infty, \infty)$. $f(x) = \begin{cases} 3inx, & x \ge 1/4 \\ 0.5x & 1 \ge 1/4 \end{cases}$

Solution:

At
$$x = \overline{\eta}_{4}$$

To prove: $f(\overline{\eta}) = f(\overline{\eta}) = f(\overline{\eta}) \rightarrow A$

$$f(\overline{\eta}/4) = \lim_{\chi \to \overline{\eta}/4} f(\chi) = \lim_{\chi \to \overline{\eta}/4} \cos \chi = \cos 45^{\circ} = \frac{1}{\sqrt{2}} \to 0$$

$$f(\overline{\eta}/4) = \lim_{\chi \to \overline{\eta}/4} f(\chi) = \lim_{\chi \to \overline{\eta}/4} \sin \chi = \sin \chi = \frac{1}{2} \to 0$$

$$f(\overline{\eta_{4}}) = \lim_{\chi \to \overline{\eta_{4}}} f(\chi) = \lim_{\chi \to \overline{\eta_{4}}} \sin \chi = \sin 45 = \sqrt{2} \to 2$$

$$f\left(\overline{x}^{t}\right) = \lim_{\chi \to \frac{\pi}{4}} f(\chi) = \lim_{\chi \to \frac{\pi}{4}} los\chi = cos45 = \frac{1}{\sqrt{2}} \to 8$$

From 0 & 0 & 3 weget,

$$f\left(\overline{y_{4}}\right) = f\left(\overline{y_{4}}\right) = f\left(\overline{y_{4}}\right)$$

:. f is continuous on (-0100).

6. Show that f is continuous on $(-\infty,\infty)$, $f(x) = \int \sqrt{x}, x \ge 1$.

Ans:

$$\sim \frac{\chi^2}{\sqrt{\chi^2}} \sqrt{\chi}$$

To prove: $f(i^-) = f(i) = f(i^+)$

ANS: 1.

· f is continuous on L-00,00).

1.4 Derivatives:

Tangent Line:

The tangent line to the curve y = f(x)at the point P (a, fla)) is the Line through P with Slope $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ provided that this limit exists.

Derivative: The derivative of a function of at a number a, denoted by f'(a) is, $f'(\alpha) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

WOTE:

The equation of the tangent line is, f(x)= 9= g(x) (y-y,)=m(x-x1). f(x) = y'= g'(x). (or) y - f(a) = f'(a)(x-a). m = f'(x)=4'

1. Find an equation of the targent line to the curve at the given point $y = \sqrt{x}$, (1.1).

Given: $Y = f(x) = \sqrt{x}$, (1,1) $y' = f(x) = \frac{1}{2\sqrt{x}}$

Slope $m = f'(x) = (y')_{(11)} = \frac{1}{2}$.

The equation of the tangent line at (1,1) is,

$$y-y_1 = m(x-x_1).$$

 $y-1 = \frac{1}{2}(x-1). \Rightarrow 2y-2 = x-1$
 $y = \frac{1}{2}x + \frac{1}{2}.$

2. Find the blope of the tangent line to the parabola $y = 4x - x^2$ at (1,3).

Solution: Given:
$$y = 4x - x^2$$

$$f(x) = 4 - 2x$$

$$m = f'(1) = 4 - 2$$

$$m = 2.$$

3. Find an equation of the tangent line to the ob y=g(x) at x=5, 18 g(5)=-3.and g'(5)=4.

Let y=g(x). Given: g(5)=-3, g(5)=4. Solution: (Slope) m = y' = g'(x) = g(x)/x=5 = 4

$$y = g(x) = g(x)/x=5$$

$$x_1 = 5$$
, $y_1 = -3$ and $m = 4$.

.. The equation of the targent line is,

$$y-y_1 = m(x-x_1)$$

 $y+3 = 4(x-5)$.

4. It an equation of the tangent line to the curre (4) y = f(x) at point where a = 2 is y = 4x - 5, find f(a) and f'(a).

solution: Given:
$$y = f(x) = 4x - 5$$

 $f'(x) = 4$
 $f(x) = 8 - 5 = 3$.
 $m = f'(x)/_{x=2} = f'(x) = 4$

5. Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3,3) and at what point the tangent line horizontal in the first Quadrant. [u.0:2018 Jan]

solution:

Griven:
$$x^3 + y^3 = 6xy$$
 at $(3,3)$,

 $\Rightarrow 6xy = x^3 + y^3$
 $\Rightarrow 2y = \frac{x^3 + y^3}{6x} = \frac{x^3}{6x} + \frac{y^3}{6x}$
 $\Rightarrow 2y = \frac{x^3 + y^3}{6x} = \frac{x^3}{6x} + \frac{y^3}{6x}$
 $\Rightarrow 3x^2 + 3y^2y' = 6xy + 6xy'$
 $\Rightarrow 3x^2 + 8y^2y' = 6y + 6xy'$
 $\Rightarrow 3y^2y' - 6xy' = 6y - 3x^2$
 $\Rightarrow 3y^2 - 6x$
 $\Rightarrow 3y^2 - 6x$
 $\Rightarrow 3y^2 = -1 \Rightarrow \frac{dy}{dx} = -1 \Rightarrow m = -1$

The equation of the tangent line at (8,3) is, y-y, = $m(x-x_i)$ y-3 = (-1) (x-3) y-3 = -x+3

> x +y = 6.

To find the point of the tangent line horizontal in the Brot quadrant.

$$y' = 0$$

$$y' = 6y - 3x^{2} = 0$$

$$\Rightarrow 6y - 3x^{2} = 0 \Rightarrow 2y = x^{2}$$

$$\therefore y = x^{2}/2.$$

$$\mathcal{D} \Rightarrow \qquad \chi^{3} + \chi^{3} = 6\chi y$$

$$\chi^{3} + (\chi^{2}/2)^{3} = 6\chi (\chi^{2}/2)$$

$$\Rightarrow \qquad \chi^{3} + \chi^{6} = 3\chi^{3} \Rightarrow \chi^{6}/8 = 3\chi^{3}$$

$$\Rightarrow \qquad \chi^{3} = 16 \Rightarrow \chi^{3} = (2)^{4}$$

$$\therefore \qquad \chi = 2^{4/3}$$

$$\chi = 2^{4/3}$$

$$\Rightarrow \qquad y = (2^{4/3})^{3} = 2^{3/3}$$

$$\Rightarrow \qquad y = 2^{5/3}$$

$$\therefore \qquad \chi = 2^{4/3}$$

$$\Rightarrow \qquad \chi = 2^{4/3}$$

6. Find an equation of the tangent line to the parabola $y = x^2 - 8x + 9$ at the point (3, -6).

solution: y = - 2x.

7. Find the Slope of the tangent to the curve $y = 1/\sqrt{x}$ at the point where x = a.

Find equations of the tangent lines at the points (1,1) and (4,1/2).

```
1.5 Differentiation Rules:
```

- a) Derivatives of polynomials:
- 1) Equation of tangent line is $y-y_1 = m(x-x_1), m = \frac{dy}{dy}$
- 2) Equation of normal line is $y-y_1 = -\frac{1}{m}(x-x_1)$ dx
- 1. Find an equation of the tangent line and normal

[line to the curve the given point $y = 3x^3 - x^3$, (1,2). Solution: Given: y=3x2-x8, (1,2)

$$y = 3x^2 - x^8 = y' = 6x - 3x^8$$

 $m = (y')_{1/2} = 6-3 = 3.$

a) Equation of tangent line is, b) Equation of normal line is, $y-y_1=-\frac{1}{m}\left(x-x_1\right)$

 $y-y_1 = m(x-x_1)$

$$(y-2) = 3(x-1)$$
 $(y-2) = -\frac{1}{3}(x-1)$

$$\Rightarrow y = 3x - 1$$

$$y = -x + 7$$

$$y = -3x + 73$$

2. H.W $y = \sqrt{x} = (x)^{4}$, Ans: y = 4x + 34, y = -4x + 5.

3. The equation of motion of a particle is S=2t-5t2 +3t +7, where 3 is measured in centimeters and t in seconds. Find the acceleration as a function ob time. What is the acceleration after 2 seconds?

Solution: The velocity and acceleration are,

$$V(t) = \frac{ds}{dt} = 6t^{3} - 10t + 3.$$

$$a(t) = \frac{dv}{dt} = 12t - 10$$

$$\left[a(t)\right]_{t=2} = 14 \text{ cm/3}^{2}$$

6

4. The equation of motion of a particle is $S = t^3 - 3t$, where S is in meters and t is in seconds. Find

- a) The velocity and acceleration as function of t,
- b) The acceleration after 28 and
- c) the acceleration when the velocity is o.

Solution: Given: S= t3-3t.

a)
$$V = \frac{ds}{dt} = 3t^{\frac{3}{2}} - 3$$

$$a = \frac{dV}{dt} = 6t$$

- c) Find acceleration when the velocity is 0. $V=0 \Rightarrow 3t^{3}-3=0 \Rightarrow 3t^{2}=3$ $\Rightarrow t^{3}=1 \Rightarrow t=\pm 1.$ $\therefore \left[\frac{dv}{dt}\right]_{t=1} = 6 \text{ m/s}^{3} \quad \text{[reject } t=-1\text{]}.$

Desevatives:

5. Find the first and second derivatives of the function $f(x) = 10 x^{10} + 5x^5 - x$.

Solution: Given:
$$f(x) = 10 x^{10} + 5x^{5} - x$$

 $f'(x) = 10 \left[10x^{9} \right] + 5 \left[5x^{4} \right] - 1$
 $= 100 x^{9} + 35 x^{4} - 1$

$$\int_{0}^{\pi} |x| = 100 \int_{0}^{\pi} |x|^{8} \int_{0}^{\pi} |x|^{3} \int_{0}^{\pi} |x|^{2} = 100 \int_{0}^{\pi} |x|^{8} \int_{0}^{\pi} |x|^{2} \int_$$

7. Find a second degree polynomial p such that P(a) = 5, p'(a) = 3, P''(a) = 2.

Solution: Criven:
$$P(a) = 5$$
, $P(a) = 3$, $P'(2) = 2$.

Let
$$p(x) = ax^2 + bx + c \rightarrow 0$$

 $p'(x) = 2ax + b \rightarrow 0$
 $p'(x) = 2a \rightarrow 0$

Given:
$$p'(a) = 2 \Rightarrow p'(a) = 2a = 2 \Rightarrow a = 1$$

 $p'(a) = 3 \Rightarrow p'(a) = 4a + b = 3$
 $\Rightarrow 4 + b = 3$

$$p(a)=5 \Rightarrow p(a) = 4a + 2b + c = 5 \Rightarrow 4-2+c=5 \Rightarrow c=3$$

Scanned by CamScanner

1.6 Marama and variena of functions of one

variable:

a) Absolute Maximum and absolute Minimum:

Definition: Let c be a number in the domain D of a function f. Then f(c) is the

- * absolute Maximum value of f on D if f(c) > f(x) for all x in D.
- * absolute runimum value ob f on Dib f(c) \left(x)
 for all x in D.

Definition: The number f(c) is a

- * local Maximum value of f if f(c) > f(x) when x is near C.
- * local minimum value of f is f(c) = f(x) when x is near c.

Extreme value Theorem:

It f is continuous on a closed interval [a,b], then f attains an absolute Maximum value f(c) and an absolute minimum value f(d) at some numbers C and d in [a,b].

Fernal's Theorem:

If f has a local Marximum or Minimum at C and if f'(c) exists then f'(c)=0.

Definition:

A crétical number of a function f 3 a number C in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

The closed Interval Method:

To find the absolute Maximum and Minimum values of a continuous function for a closed interval [9,6].

- 1. Find the values ob f at the cuitical numbers of in (a,b).
- 2. Find the values of f at the end points of the interval.
- 3. The largest of the values from steps 1 and 2 is the absolute Maximum value; the smallest of these values is the absolute Minimum Value.

1. Find the Critical values of the function: $f(x) = 5x^{2} + 4x.$

Solution: Given: $f(x) = 5x^2 + 4x \rightarrow 0$, Critical numbers of f occur at f(x)=0+2 $f'(x) = 10 \times +4 \rightarrow 3$

Ø → 10x +4=0 → x = -4/10 => x=-3/5

:. The Critical Value = -2/5.

 $2. | g(x) = ax^3 - 3x^9 - 36x.$

Given: $g(x) = 2x^3 - 3x^2 - 36x - 40$ solution:

critical numbers of g occup at g'(x)=0. -> @ $9'(x) = 6x^2 - 6x - 36$ $\Rightarrow x = -2, x = 3.$:. Crétical value =-2,3. 5. $f(x) = x^{3}e^{-3x}$. Ans: x = 0, $x = \frac{3}{3}$. 4. $f(x) = x^2 + \frac{2}{x}$ Ans: x = 1. 5. Find the absolute and local Maximum, values of $f(x) = \frac{1}{x} / x \ge 1.$ solution: Given: $f(x) = \frac{1}{x}, x > 1$. 2 3 Masamum $f(i) = \frac{1}{1} = 1$ is the absolute runimum of f. 6. $f(x) = \begin{cases} 1-x & ib & 0 \le x < 2 \\ 2x-4 & ib & 2 \le x \le 5. \end{cases}$

Solution:

χ	Q	1	2	3
fix)	1	0	0	یک

f(3) = 6-4 = 2 is the absolute Maximum. 7. $J(x) = |x|, -1 |2x|^2$

Ans: f10) = 0 is the A. Nienimum. No, absolute Maximum.

The closed interval Metroop 1. Find the absolute Maximum and Minimum values of $f(x) = x^3, [-2,1]$

t. solution: Given: f(x) = 22, [-2,1] -> 0 Critical numbers of foccur at $f'(x)=0 \rightarrow \emptyset$ f(x) = 2x

:. Ceitical value = 0. f(-2) =4 is the a. Maximum value of f

f(0) = 0 is the a ninimum value of f.

	end point	Critical point	end point
χ	-2	0	1
fix)	4	0	1

2. $f(x) = 3x^4 - 16x^3 + 18x^2, -1 \le x \le 4$

Solution: Given: $f(x) = 3x^{\frac{1}{2}} 16x^{\frac{3}{2}} + 18x^{\frac{3}{2}} - 1 \le x \le 4 \to 0$

Critical numbers of foccus at $f'(x) = 0 \rightarrow \emptyset$

 $f'(x) = 12x^3 - 48x^3 + 36x$

 $(3) = 12 x^3 - 48 x^2 + 36 x = 0$ > 12x \[x = 4x + 3 \] = 0

 $\Rightarrow x = 0.3.1.$

· Critical value = 0,1,3.

	end point	Critical point	Cutical Point	Critical	end point
χ	-1	0	l	3	4
fix)	a.137	0	5	-2,7	<i>3</i> 2

f(3) = -27 is the a. Minimum value of f f(-1) = 37 is the a Maximum value of f

 $f(x) = \chi^3 - 3\chi^2 + 1$, $-1 \leq \chi \leq 4$. $\int_{a}^{AMS} f(4) = 17$, f(4) = -3

1.6 (b) Increasing / Decreasing test:

- a) If f(x)>0 on an interval, then f is increasing on that interval.
- b) If f(x) 20 on an interval, then f is decreasing on that interval.

First Derivative Test:

Suppose that C is a critical number of a continuous function f.

- a) If f' Changes from positive to negative at C, then f has a local Maximum at C.
- b) If f' changes from regative to positive at c, then f has a local Minimum at C.
- e) If I does not Change sign at C (Ex: 18 f is positive on both sides) then I has no local maximen of Minimum at C.

Concare upward / concare downward:

Ib the graph of lies above all of its tangents on an interval I, then it is called Concave upward on I, If the graph of lies between all of its tangents on I, it is called Concave downward on I.

Concoure upward = Concoure downward.

Concavity Test:

a) If f'(x) to for all x in I, then the graph of f is concave upward on I.

6) If f'(x) <0 for all x in I, then the graph ob f is concave downward on I.

Inflaction point:

A point P on a curve y=fix) is called an inflection point is f is continuous there and the curve changes from Concave upward to Concave downward or from concave downward to Concave upward at P.

selond Derivative Test:

Suppose f'is continuous real C.

- a) If f(c) = 0 and f(c) > 0, then f has a local Minimum at c.
- b) If f'(c) = 0 and $f''(c) \ge 0$, then f has a local Maximum at C.

Arower the following questions about the functions whose derivatives are given:

- a) what are the critical point ob f?
- b) on what interval is f increasing or decreasing?
- c) At what points, if any, does f assume local Maximum and Minimum values?
- d) Find intervals of concavity and the inflection points.

1. $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ [U.a. Jan 2016]

O Solution: Prives

Given: $f(x) = 3inx + los x, 0 \le x \le 2i$ f'(x) = los x - 3inx $f'(x) = 0 \Rightarrow los x - 3inx = 0$ $\Rightarrow los x = 3inx.$

Text.	a) exitical points of $\sqrt{1}/4 + 36\delta = 2\pi + \sqrt{1}/4$	= 1/4 = 1/4 / 54	1. 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	8. 5 kja
12.	House Interval	sign oz j'	Behaviour 08 f	<u>G</u> .
1	O CX CT/4	+	increasing	9400
Ma	1/4 CX 251/4	-	decreasing	Sin (270
10/4	5 5 1/4 2x 221	+	increasing.	
614				(54+
3/1	· ·	ve test is a		(90)
0	(i) Maximum at Typ	, f (1/4) = 311	11/4 + COS 11/4	
100		$=\frac{1}{\sqrt{2}}$	$- + \sqrt{2} = \sqrt{2}$	4 5 4 5
3 2 2	(ii) Nienemum at 511/4	= V2		3.3.5
4 5	(1) 11.01.01.01	1 4 (51//4) = 3	Sin \$\frac{17}{4} + cos \$\frac{57}{4}	1 F 1 5
	d) f'(x) = - sinx - 1	= 16\-= ×600	12 nx +103x)	
V6	$f(x) = 0 \Rightarrow -(3)$			14 + 11
	Sas 190+45) => 3	Sinx = losx	Sin(270+145)	
O *	$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{4} = \frac{1}{3} = \frac{1}{4} + \frac{1}{4} = \frac{1}{3} = \frac{1}{4} + \frac{1}{4} = \frac$	= 311 , 111 ,	Sin(20+46) = $-\cos 45 = \frac{311}{2} + \frac{11}{4}$	= 711
	Interval :	sign of f" B	ehavious of f	7
An 41	0 C X C 8 1/4		ontave down	
10 m/s	31 Lx C 1/4	+ (ioncave up	
6/3	TI/4 LX L2T	- C	oncave down	
			,	
	e) Inflection points			
	(導,0)(費,	0)	-	
	$\int : \sin \alpha, f(\frac{3\pi}{4}) = 0$	$f\left(\frac{711}{4}\right)=0.$		
	1			

3.
$$f(x) = \chi^{4} - 2\chi^{2} + 3$$
 [U. R. Jan 2016]

Solution: (niven: $f(x) = \chi^{4} - 2\chi^{2} + 3$
 $\Rightarrow f'(x) = +\chi^{3} - +\chi = +\chi(\chi^{2} - 1)$
 $= +\chi(\chi - 1)(\chi + 1) = 0$
 $\Rightarrow \chi = 0, \chi = 1, \chi = -1$

2) Chilical Points are $\chi = 0, \chi = 1, \chi = -1$.

1) District Sign of f' Behavior of f .

1) District Sign of f' Behavior of f .

1) District derivative test is a local, increasing which increasing $f'(\chi) = \chi^{2} + \chi^$

 $\frac{1}{\sqrt{3}}$ $\angle x \angle \omega$

Conlare up

e) Inflection points are
$$\left(\pm \frac{1}{\sqrt{3}}, \frac{22}{9}\right)$$

since, $f\left(\pm \frac{1}{\sqrt{3}}\right) = \frac{22}{9}$.

H.W.

b)

$$3 f(x) = \chi + 2 \sin x, 0 \le \chi \le 2\pi$$

4.
$$f(x) = 5x^4 - 4x^3 - 12x^3 + 5$$
 $3x^4 - 16x^3 + 18x^2 - 1 - 1 \le x \le 4$

5. Find the local Maximum and Minimum Values of f Using both the first and second derivative tests. $y = x^4 - 4x^3$ with respect to concavity and points of inflection.

Solution: Given:
$$f(x) = x^{4} - 4x^{3}$$

$$f'(x) = 4x^{3} - 12x^{2}$$

$$f'(x) = 0 \Rightarrow 4x^{3} - 12x^{2} = 0$$

$$\Rightarrow 4x^{2}(x-3) = 0$$

a): The Critical values are 0,3.

Interval	5,9n 03 f	Behaviour of f
(-0,0)		decreasing
(0,3)		decreasing
(3,0)	+	Increasing

c) First derivative test tells us that f does not have a local Maximum or ruinimum at O.

d)
$$f''(x) = 12x^{2} - 24x$$

 $f''(x) = 0 \Rightarrow 12x^{2} - 24x = 0$
 $\Rightarrow 12x(x-a) = 0$
 $\Rightarrow x = 0, x = 2.$

Interval	f"(x)	Behaviour od f
(-0,0)	+	Concare up
(0,2) (2,0)	+	Concave cop

: Since,
$$f(0) = 0$$
, $f(a) = -16$.
f) The Second derivative test:

$$\int_{0}^{\infty} (c) = 0.$$

$$\int_{0}^{\infty} (x) = 12x^{2} - 24x.$$

f'(8) = 0, f''(3) > 0, f(3) = -27 is a local numinum.

The second derivative test gives no information about the critical number 0.

since f'(0) = 0, f"(0) = 0.

But first derivative test gives f does not have a local Maximum or ruinimum at 0.

6. Find the local Maximum and Minimum values of $f(x) = x^5 - 5x + 3$ using both the first and second derivative tests.

Ans: $f'(x) = 5x^{4} - 5$ f'(1)=0, f'(-1)=0. f''(1)=a0, f''(-1)=-a0.

18t deivative: 2nd derivative:

i) max
$$f(-1) = 7$$
 i) max $f(-1) = 7$

ii) Nûn
$$f(1) = -1$$
 i) Min $f(1) = -1$.

i) third the interests on thich it is increasing or decreasing (i) third the local max of local min. values of f.

(iii) Find the intends of concerty of the inflection forms.

$$f(x) = 6x^{3} + 3x - 36x$$

$$f(x) = 6x^{3} + 6x - 36x$$

 $f(x) = 0 \Rightarrow 6(x^2 + x - 6) = 0 \Rightarrow 6(x + 3)(x - 4) = 0$

Pare x=-4 f(x) = b(-4+3)(4-2) f(x) = b(x) = b

1	Interval	Nature 9 fl(x)	J	
	(-0,-3)	+	1	→ sis max. at x=-3
	(-3, a)	_	1	→ fis min at x=2.
	(2, 4)	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

(ii)
$$f(-3) = a(-3)^3 + 3(-3)^4 - 3b(-3) = -54 + 27 + 108 = 81$$

 $f(a) = a(a)^3 + 3(a)^4 - 3b(a) = 1b + 12 - 72 = -44$

(iii)
$$f'(x) = bx^{2} + bx - 3b$$

 $f''(x) = 12x + b \implies$
 $f''(x) = 0 \implies 12x + b = 0$
 $\Rightarrow x = -\frac{b}{12} = -\frac{1}{2}$. At $x = -\frac{1}{2}$,
 $f(x) = a(\frac{1}{2})^{3} + 3(\frac{1}{2})^{2} - 3b(\frac{1}{2})^{2}$
 $= -37_{2}$.

Then
$$x = -1$$

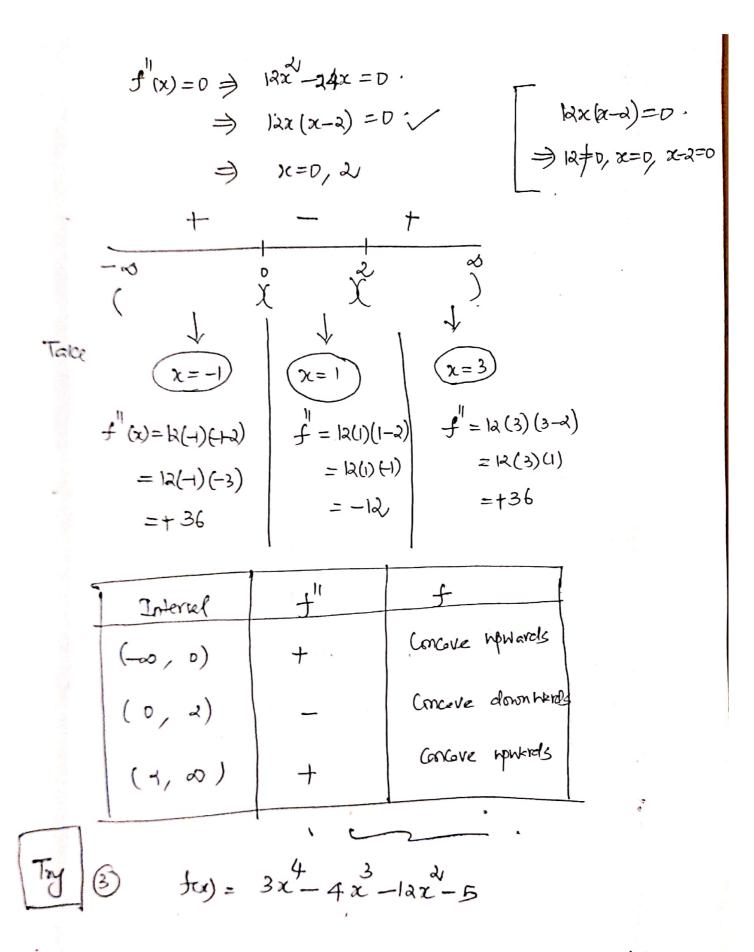
$$x = 0$$

$$f'(x) = 12(+1) + 1 = -b$$

$$f''(x) = b$$

Internal	Nemme 9 f"	f
(一0,一岁)		Conceve downward
(-½,め)	+	- Conceve nowered

Here intechm point is (-1/2/-3/2).



or move to

next Page.

PTO

(i)
$$f'(y) = \lambda_{1}x^{2} - \lambda_{2}x^{2} - \lambda_{4}x$$

 $f''(x) = 3bx^{2} - \lambda_{4}x - \lambda_{4}$
 $f''(x) = 3bx^{2} - \lambda_{4}x - \lambda_{4} = 0$
 $\Rightarrow \lambda_{1}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{2}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{2}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{3}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{4}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2} - \lambda_{4}x - \lambda_{4}x - \lambda_{4}) = 0$.

 $\Rightarrow \lambda_{5}(3x^{2}$

Interval	7 ,	7
(-0, -0.5)	+	Increning
(-0.5, 1.2)	_	Decressy
(1.2, 0)	+	Dicrany