UNIT V: COMPLEX INTEGRATION

Introduction to complex integration: Contour Integrals (complex line integral):

Let f be defined at points of a smooth curve C given by z = x(t) + iy(t), $a \le t \le b$ The **contour integral** of f along C is

$$\int_{C} f(z)dz = \lim_{n \to \infty} \sum_{k=1}^{n} f(\in_{k}) \Delta z_{k},$$

where \in_k is the arbitrary point in the arc $z_{k-1}z_k$.

Evaluation of complex integrals:

Generally, a complex integral is expressed in terms of two real integrals and evaluated.

If
$$f(z) = u + iv$$
 where $z = x + iy => dz = dx + idy$

$$\int_{C} f(z)dz = \int_{C} (u + iv)(dx + idy)$$

$$\left| \int_{C} f(z)dz = \int_{C} (udx - vdy) + i \int_{C} (udy + vdx) \right|$$

Simply connected Regions:

A region R is called simply connected, if any simple closed curve in R can be shrunk to a point.

Multiply connected Regions:

A region R which is not simply connected is called multiply connected.

Statement and application of Cauchy's integral theorem & integral formula:

Cauchy Integral Theorem:

If f(z) is analytic & f'(z) is continuous inside & on a closed curve C, then $\int_C f(z) dz = 0$.

Problems:

1. Evaluate $\int_C \frac{3z^2 + 7z - 1}{z - 2} dz$ where C is the curve |z| = 1

Given
$$|z| = 1 => x^2 + y^2 = 1$$

This is a circle with center $(0,0)$ & radius 1
Here $f(z) = 3z^2 + 7z - 1$
Equating denominator to zero,
 $=> z - 2 = 0 => \boxed{z=2}$

This point lies outside the circle |z| = 1

- : The function is analytic inside the circle
 - : By Cauchy Integral Theorem,

$$\int_{C} \frac{3z^2 + 7z - 1}{z - 2} dz = 0$$

2. Evaluate
$$\int_{C} \frac{2z+5}{(z-1)(z-2)} dz \text{ where } C \text{ is } |z| = \frac{1}{2}$$

Solution:

Given
$$|z| = \frac{1}{2} = > x^2 + y^2 = \frac{1}{4}$$

This is a circle with center (0,0)& radius

Here
$$f(z) = 2z + 5$$

Equating denominator to zero,

$$=> z - 1 = 0, z - 2 = 0$$

 $=> z = 1, z = 2$

Both the points lies outside the circle $|z| = \frac{1}{2}$

: The function is analytic inside the circle ∴ By Cauchy Integral Theorem,

$$\int_{C} \frac{2z+5}{(z-1)(z-2)} dz = 0$$
3. Evaluate $\int_{C} \frac{4z^2-6z+1}{z-4} dz$, $C: |z-1| = 2$

3. Evaluate
$$\int_C \frac{4z^2-6z+1}{z-4} dz$$
, $C: |z-1| = 2$

Given
$$|z - 1| = 2 => (x - 1)^2 + y^2 = 4$$

This is a circle with center $(1,0)$ & radius 2
Here $f(z) = 4z^2 - 6z + 1$

Equating denominator to zero,

$$=> z - 4 = 0 => \boxed{z = 4}$$

This point lies outside the circle |z - 1| =

- : The function is analytic inside the circle -3
 - ∴ By Cauchy Integral Theorem

$$\int_{C} \frac{4z^2 - 6z + 1}{z - 4} dz = 0$$

Cauchy integral formula:

If f(z) is analytic inside & on a closed curve C & 'a' is an interior point then

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz$$

Problems:

1. Evaluate
$$\int_C \frac{z^2+2}{z-2} dz$$
, $C: |z| = 3$ using CIF

Solution:

Given
$$|z| = 3 = x^2 + y^2 = 9$$

This is a circle with center (0,0)& radius 3 Equating denominator to zero,

$$=> z - 2 = 0 => \boxed{z = 2}$$

This point lies inside the circle |z| = 3

: By Cauchy Integral Formula,

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz$$

Here
$$f(z) = z^2 + 2$$
 and $a = 2$

$$f(a) = f(2) = 4 + 2 = 6$$

using CIF

Given
$$|z + 1 + i| = 2$$

 $=> (x + 1)^2 + (y + 1)^2 = 4$
This is a circle with center $(-1, -1)$ & radius 2
Equating denominator to zero,
 $=> z^2 + 2z + 4 = 0$

 $(-1\sqrt{3})$

$$=> z = \frac{-2 \pm \sqrt{4 - 16}}{2}$$

$$=> z = \frac{-2 \pm 2\sqrt{3}i}{2} = -1 \pm \sqrt{3}i$$

Here $z = -1 + \sqrt{3}i$ lies outside |z + 1 + i| =& $z = -1 - \sqrt{3}i$ lies inside |z + 1 + i| = 2: By Cauchy Integral Formul

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz$$

$$\therefore \int_{C} \frac{z+1}{z^{2}+2z+4} dz = \int_{C} \frac{z+1}{\left[z-\left(-1+i\sqrt{3}\right)\right]\left[z-\left(-1-i\sqrt{3}\right)\right]} dz$$
Here $f(z) = \frac{z+1}{z-\left(-1+i\sqrt{3}\right)}$ and $a = -1 - \sqrt{3}i$

3. Evaluate
$$\int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz, C: |z| = 3$$
 using CIF

Solution:

Given
$$|z| = 3 => x^2 + y^2 = 9$$

This is a circle with center (0,0)& radius 3 Equating denominator to zero,

$$=> z - 1 = 0, z - 2 = 0$$

$$=> z = 1, z = 2$$

Both the points lies outside the circle |z|=3

: By Cauchy Integral Formula,

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz$$

Consider
$$\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$

 $1 = A(z-2) + B(z-1) \to (1)$
sub $z = 1$ in $(1) => 1 = A(-1) + 0$

$$=> A = -1$$

$$\text{sub } z = 2 \text{ in } (1) => 1 = 0 + B(1) => B = 1$$

$$\therefore \frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2}$$

$$\text{Now, } \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)(z-2)} dz$$

$$= -\int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)} dz + \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-2)} dz$$

$$= -I_{1} + I_{2}$$

$$\text{Consider } I_{1} = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)} dz$$

$$\text{Here } f(z) = (\cos \pi z^{2} + \sin \pi z^{2}) \text{ and } a = 1$$

$$\therefore f(a) = f(1) = \cos \pi + \sin \pi = -1 + 0 = -1$$

$$\therefore I_{1} = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)} dz = 2\pi i f(1)$$

$$I_1 = -2\pi i$$

Consider
$$I_2 = \int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-2)} dz$$

Here $f(z) = (\cos \pi z^2 + \sin \pi z^2)$ and a = 2

$$f(a) = f(2) = \cos 4\pi + \sin 4\pi = 1 + 0 = 1$$

$$\therefore I_2 = \int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-2)} dz = 2\pi i f(2) = 2\pi i$$

$$\int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z - 1)(z - 2)} dz = -I_{1} + I_{2}$$
$$= -(-2\pi i) + 2\pi i = 4\pi i$$

$$= -(-2\pi i) + 2\pi i = 4\pi i$$

$$\left| \therefore \int_{C} \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz = 4\pi i \right|$$

Taylor Series:

If f(z) is analytic at all points inside C, with it's centre at a point'a' & radius R, then at each point inside C,

$$f(z) = f(a) + \frac{(z-a)}{1!}f'(a) + \frac{(z-a)^2}{2!}f''(a) + \cdots$$

Note:

Suppose if the region is given as |z| < a, then change it as $\frac{|z|}{a} < 1$, since for less than 1 the series converges fast.

We will use the following formula:

1.
$$(1+z)^{-1} = 1 - z + z^2 - z^3 + \cdots$$

2. $(1-z)^{-1} = 1 + z + z^2 + z^3 + \cdots$

Problems:

1. Expand $f(z) = \sin z$, using Taylor's series at $z = \frac{\pi}{4}$

Solution:

Given
$$f(z) = \sin z$$
 & $z = \frac{\pi}{4}$
consider, $f(z) = \sin z$ => $f\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
 $f'(z) = \cos z => f'\left(\frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
 $f''(z) = -\sin z => f''\left(\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$
 $f'''(z) = -\cos z => f'''\left(\frac{\pi}{4}\right) = -\cos\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$

Taylor Series is given by

$$f(z) = f(a) + \frac{(z-a)}{1!}f'(a) + \frac{(z-a)^2}{2!}f''(a) + \cdots$$

$$f(z) = \sin z = \frac{1}{\sqrt{2}} + \left(z - \frac{\pi}{4}\right) \left(\frac{1}{\sqrt{2}}\right) + \frac{\left(z - \frac{\pi}{4}\right)^2}{2!} \left(-\frac{1}{\sqrt{2}}\right) + \frac{\left(z - \frac{\pi}{4}\right)^3}{3!} \left(-\frac{1}{\sqrt{2}}\right) + \cdots$$

2. Obtain the Taylor's series to represent the function $\frac{1}{(z+2)(z+3)}$ in the region |z| < 2.

Let
$$f(z) = \frac{1}{(z+2)(z+3)}$$

consider $\frac{1}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3}$
 $= > 1 = A(z+3) + B(z+2) \rightarrow (1)$
sub $z = -2$ in $(1) = > 1 = A(1) + 0$
 $A = 1$

sub
$$z = -3$$
 in $(1) = > 1 = 0 + B(-1)$

$$\frac{B = -1}{|z|}$$

$$\frac{1}{(z+2)(z+3)} = \frac{1}{z+2} - \frac{1}{z+3}$$
Given $|z| < 2 = > \frac{|z|}{2} < 1$
(Always change the condition as <1)
If $\frac{|z|}{2} < 1$, then $\frac{|z|}{3} < 1$

$$\frac{1}{z+2} = \frac{1}{z+2} - \frac{1}{z+3}$$

$$= \frac{1}{2} \left(\frac{1}{1+\frac{z}{2}} \right) - \frac{1}{3} \left(\frac{1}{1+\frac{z}{3}} \right)$$

$$= \frac{1}{2} \left(1 + \frac{z}{2} \right)^{-1} - \frac{1}{3} \left(1 + \frac{z}{3} \right)^{-1}$$

$$= \frac{1}{2} \left[1 - \frac{z}{2} + \frac{z^2}{4} - \cdots \right] - \frac{1}{3} \left[1 - \frac{z}{3} + \frac{z^2}{9} - \cdots \right]$$

$$\therefore f(z) = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{3}\right)^n$$

Laurent's Series:

Let C_1 and C_2 be two concentric circles $|z-a|=R_1 \& |z-a|=R_2$ where $R_2 < R_1$. Let f(z) be analytic on $C_1 \& C_2 \&$ in the anular region R between them. then f or any point z in R,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n + \sum_{n=1}^{\infty} b_n (z - a)^{-n}$$

$$where \ a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(z)}{(z - a)^{n+1}} dz$$

$$\& \ b_n = \frac{1}{2\pi i} \int_{C_2} \frac{f(z)}{(z - a)^{1-n}} dz$$

Note:

The part $\sum_{n=0}^{\infty} a_n (z-a)^n$, consisting of positive integral powers of (z-a) is called the analytic part of Laurents series, while $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ consisting of negative integral powers of (z-a) is called the principal part of Laurents series.

Problems:

1. Obtain the Laurent's series expansion of

$$\frac{1}{(z+1)(z+3)}$$
 for $(i)|z| < 1$, $(ii)1 < |z| < 3$, $(iii)|z| > 3$

Let
$$f(z) = \frac{1}{(z+1)(z+3)} = \frac{A}{z+1} + \frac{B}{z+3}$$

 $= > 1 = A(z+3) + B(z+1) \to (1)$
sub $z = -1$ in $(1) = > 1 = A(2) + 0$

$$\begin{vmatrix} A = \frac{1}{2} \\ \text{sub } z = -3 \text{ in } (1) => 1 = 0 + B(-2) \\ B = -\frac{1}{2} \\ \vdots f(z) = \frac{\frac{1}{2}}{z+1} - \frac{\frac{1}{2}}{z+3} \to (2) \\ (i)|z| < 1 => \frac{|z|}{1} < 1 \text{ Also } \frac{|z|}{3} < 1 \\ \vdots (2) => f(z) = \frac{1}{2} \left[\frac{1}{1+z} \right] - \frac{1}{2} \cdot \frac{1}{3} \left[\frac{1}{1+\frac{z}{3}} \right] \\ = \frac{1}{2} \left[(1+z)^{-1} - \frac{1}{3} \left(1 + \frac{z}{3} \right)^{-1} \right] \\ = \frac{1}{2} \left[(1-z+z^2-\cdots) - \frac{1}{3} \left(1 - \frac{z}{3} + \frac{z^2}{9} - \cdots \right) \right]$$

$$= \frac{1}{2} \left[\sum_{n=0}^{\infty} (-1)^n z^n - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{3} \right)^n \right]$$

$$\therefore f(z) = \frac{1}{2} \left[\sum_{n=0}^{\infty} (-1)^n z^n - \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}} \right]$$

$$(ii)$$
1 < $|z|$ < 3

This condition can be spited as

$$1 < |z| \& |z| < 3$$

$$= > \frac{1}{|z|} < 1 \& \frac{|z|}{3} < 1$$

$$\therefore (2) = > f(z) = \frac{1}{2} \left[\frac{1}{z} \left(\frac{1}{1 + \frac{1}{z}} \right) - \frac{1}{3} \left(\frac{1}{1 + \frac{z}{3}} \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{z} \left(1 + \frac{1}{z} \right)^{-1} - \frac{1}{3} \left(1 + \frac{z}{3} \right)^{-1} \right]$$

$$= \frac{1}{2} \left[\frac{1}{z} \left(1 - \frac{1}{z} + \frac{1}{z^2} - \cdots \right) - \frac{1}{3} \left(1 - \frac{z}{3} + \frac{z^2}{9} - \cdots \right) \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \cdots \right) - \frac{1}{3} \left(1 - \frac{z}{3} + \frac{z^2}{9} - \cdots \right) \right]$$

$$\therefore f(\mathbf{z}) = \frac{1}{2} \left[\sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z} \right)^{n+1} - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{3} \right)^n \right]$$

$$(iii) |z| > 3 = > \frac{3}{|z|} < 1. Also \frac{1}{|z|} < 1$$

$$\therefore (2) = > f(z) = \frac{1}{2} \left[\frac{1}{z} \left(\frac{1}{1 + \frac{1}{z}} \right) - \frac{1}{z} \left(\frac{1}{1 + \frac{3}{z}} \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{z} \left(1 + \frac{1}{z} \right)^{-1} - \frac{1}{z} \left(1 + \frac{3}{z} \right)^{-1} \right]$$

$$= \frac{1}{2} \left[\frac{1}{z} \left(1 - \frac{1}{z} + \frac{1}{z^2} - \cdots \right) - \frac{1}{z} \left(1 - \frac{3}{z} + \frac{9}{z^2} - \cdots \right) \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \cdots \right) - \left(\frac{1}{z} - \frac{3}{z^2} + \frac{9}{z^3} - \cdots \right) \right]$$

$$= \frac{1}{2} \left[\sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z} \right)^{n+1} - \sum_{n=0}^{\infty} (-1)^n 3^n \left(\frac{1}{z} \right)^{n+1} \right]$$

$$\therefore f(z) = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (1 - 3^n) \left(\frac{1}{z} \right)^{n+1}$$

2. Expand
$$\frac{z^2}{(z+2)(z-3)}$$
 in a Laurent's series expansion if $(i)|z| < 3 \& (ii)2 < |z| < 3$

Solution:

Let
$$f(z) = \frac{z^2}{(z+2)(z-3)}$$

Here the degree of the numerator is equal to the degree of the denominator.

: divide numerator by denominator

$$\frac{z^2}{(z+2)(z-3)} = 1 + \frac{z+6}{(z+2)(z-3)}$$

$$\operatorname{consider} \frac{z+6}{(z+2)(z-3)} = \frac{A}{z+2} + \frac{B}{z-3}$$

$$=> z+6 = A(z-3) + B(z+2) \to (1)$$

$$\operatorname{sub} z = -2 \operatorname{in} (1) => 4 = A(-5) + 0$$

$$\boxed{A = -\frac{4}{5}}$$

$$\operatorname{sub} z = 3 \operatorname{in} (1) => 9 = 0 + B(5)$$

$$\boxed{B = \frac{9}{5}}$$

$$\vdots \frac{z^2}{(z+2)(z-3)} = 1 - \frac{\frac{4}{5}}{z+2} + \frac{\frac{9}{5}}{z-3} \to (2)$$

$$(i)|z| < 2 => \frac{|z|}{2} < 1. Also \frac{|z|}{3} < 1$$

$$(ii)$$
2 < $|z|$ < 3 => 2 < $|z|$ & $|z|$ < 3

$$\frac{2}{|z|} < 1 & \frac{|z|}{3} < 1$$

$$\therefore f(z) = 1 - \frac{4}{5} \left[\frac{1}{z} \left(\frac{1}{1 + \frac{2}{z}} \right) \right] + \frac{9}{5} \left[-\frac{1}{3} \left(\frac{1}{1 - \frac{z}{3}} \right) \right]$$

$$= 1 - \frac{4}{5z} \left(1 + \frac{2}{z} \right)^{-1} - \frac{3}{5} \left(1 - \frac{z}{3} \right)^{-1}$$

$$= 1 - \frac{4}{5z} \left[1 - \frac{2}{z} + \frac{4}{z^2} - \dots \right] - \frac{3}{5} \left[1 + \frac{z}{3} + \frac{z^2}{9} - \dots \right]$$

$$= 1 - \frac{1}{5} \left\{ \frac{4}{z} \left[1 - \frac{2}{z} + \frac{4}{z^2} - \dots \right] - 3 \left[1 + \frac{z}{3} + \frac{z^2}{9} - \dots \right] \right\}$$

$$\therefore f(z) = 1 - \frac{1}{5} \left[\frac{4}{z} \sum_{n=0}^{\infty} (-1)^n \frac{2^n}{z^n} - 3 \sum_{n=0}^{\infty} \frac{z^n}{3^n} \right]$$

3. Find the Laurent's series expansion for

$$f(z) = \frac{7z-2}{(z+1)(z)(z-2)}$$
 in the region $1 < |z+1| < 3$.

Solution:

consider

$$f(z) = \frac{7z - 2}{(z+1)(z)(z-2)} = \frac{A}{z+1} + \frac{B}{z} + \frac{C}{z-2}$$

$$= \frac{Az(z-2) + B(z+1)(z-2) + Cz(z+1)}{(z+1)(z)(z-2)}$$

$$7z - 2 = Az(z-2) + B(z+1)(z-2) + Cz(z+1)$$

$$Cz(z+1) \to (1)$$
sub $z = -1$ in (1)

$$= > -9 = A(-1)(-3) + 0 + 0$$

$$A = -3$$
sub $z = 2$ in (1)

=> 12 = 0 + 0 + C(2)(3)

$$C=2$$

sub
$$z = 0$$
 in (1)
$$= > -2 = 0 + B(1)(-2) + 0$$

$$B = 1$$

$$\therefore f(z) = -\frac{3}{z+1} + \frac{1}{z} + \frac{2}{z-2}$$
Given $1 < |z+1| < 3$

$$\text{Let } z + 1 = u \text{, then } 1 < |u| < 3$$

$$= > 1 < |u| & |u| < 3$$

$$= > \frac{1}{|u|} < 1 & \frac{|u|}{3} < 1$$

$$\therefore f(u-1) = -\frac{3}{u} + \frac{1}{u-1} + \frac{2}{u-3}$$

$$= -\frac{3}{u} + \frac{1}{u} \left[\frac{1}{(1-\frac{1}{u})} \right] - \frac{2}{3} \left[\frac{1}{1-\frac{u}{3}} \right]$$

$$= -\frac{3}{u} + \frac{1}{u} \left(1 - \frac{1}{u} \right)^{-1} - \frac{2}{3} \left(1 - \frac{u}{3} \right)^{-1}$$

$$= -\frac{3}{u} + \frac{1}{u} \left[1 + \frac{1}{u} + \frac{1}{u^2} + \cdots \right] - \frac{2}{3} \left[1 + \frac{u}{3} + \frac{u^2}{9} + \cdots \right]$$

$$= -\frac{2}{u} + \sum_{n=2}^{\infty} \frac{1}{u^n} - \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{u}{3} \right)^n$$

$$\therefore f(z) = -\frac{2}{z+1} + \sum_{n=2}^{\infty} \frac{1}{(z+1)^n} - \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{z+1}{3} \right)^n$$

Singular points:

A point z = a at which a function f(z) fails to be analytic is called a singular point (or) singularity of f(z).

$$Eg: f(z) = \frac{1}{z-2} \Longrightarrow z = 2 \text{ is a singular point.}$$

Classification of singularity: Isolated singularities:

A point z = a is said to be isolated singularity of f(z) if (i)z = a should be a singular point (ii)the neighbourhood of z = a should not contain any other singular point.

$$Eg: f(z) = \frac{1}{z(z+2)}$$

$$= > z = 0, z = -2 \text{ are isolated singular points.}$$

Poles:

An isolated singularity z = a is called a pole. A pole of order one is called a simple pole.

$$Eg: f(z) = \frac{1}{(z-4)^2(z-3)^3(z-1)}$$

$$Here \ z = 1 \ is \ a \ simple \ pole.$$

$$z = 3 \ is \ a \ pole \ of \ order \ 3$$

$$z = 4 \ is \ a \ pole \ of \ order \ 2.$$

Removable singularities:

A singular point z = a is called a removable singularity of f(z) if $\lim_{z \to a} f(z)$ exists finitely.

$$Eg: f(z) = \frac{\sin z}{z} = \frac{1}{z} \left[z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right]$$
$$= 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

here z = 0 is the singular point.

$$\therefore \lim_{z \to 0} f(z) = 1 - 0 - 0 - \dots = 1(finite)$$

z = 0 is a removable singularity.

Essential singularities:

If f(z) contains infinite number of negative powers terms then z = a is known as essential singularity.

$$Eg: f(z) = e^{1/z} = 1 + \frac{1/z}{1!} + \frac{1/z^2}{2!} + \cdots$$

Here z = 0 is the singular point.

also f(z) contains infinite number of negative terms.

z = 0 is a essential singularity.

Problems:

1. what is the nature of the singularity at z = 0 of $f(z) = \frac{\sin z - z}{z^3}$

Solution:

Given
$$f(z) = \frac{\sin z - z}{z^3}$$

Here z = 0 is the singular point.

z = 0 is a removable singularity.

2. Find singularity point of $f(z) = \sin\left(\frac{1}{z-a}\right)$

Solution:

given
$$f(z) = \sin\left(\frac{1}{z-a}\right)$$

= $\frac{1}{z-a} - \frac{1}{3!} \left(\frac{1}{z-a}\right)^3 + \frac{1}{5!} \left(\frac{1}{z-a}\right)^5 - \cdots$

Here z = a is the singular point.

also f(z) contains infinite number of negative terms.

$$z = a$$
 is a essential singularity.

3. Find the pole of
$$f(z) = \frac{1}{(z^2 + a^2)^2}$$

Given
$$f(z) = \frac{1}{(z^2+a^2)^2}$$

 $=> z^2 + a^2 = 0 => z = \pm ia$
 $\therefore z = \pm ia \text{ are poles of order 2.}$

Residue:

The coefficient of $\frac{1}{z-a}$ in the expansion of f(z) about the singular point z=a is defined as residue of f(z) at z=a.

Evaluation of Residue:

Residue at a pole of order m is given by

$$R[z=a] = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]$$

ightarrow (I)

Note:

Residue at a pole of order 1(simple pole) is given by

$$R[z=a] = \frac{1}{(1-1)!} \lim_{z \to a} \frac{d^{1-1}}{dz^{1-1}} [(z-a)f(z)]$$

$$R[z=a] = \lim_{z \to a} (z-a)f(z)$$
 \to (II)

Problems:

1. Calculate the residue of $f(z) = \frac{1 - e^{2z}}{z^3}$

Solution:

Here z = 0 is a pole of order 3

$$\therefore (I) => R[z = 0] = \frac{1}{(3-1)!} \lim_{z \to 0} \frac{d^{3-1}}{dz^{3-1}} \left[(z-0)^3 \frac{1 - e^{2z}}{z^3} \right]$$

$$= \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} \left[z^3 \frac{1 - e^{2z}}{z^3} \right]$$

$$= \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} [1 - e^{2z}]$$

$$= \frac{1}{2!} \lim_{z \to 0} \frac{d}{dz} [0 - 2e^{2z}]$$

$$= \frac{1}{2!} \lim_{z \to 0} [-4e^{2z}]$$

$$= \frac{1}{2!} [-4e^0] = -2$$

$$\left| :: R[z=0] = -2 \right|$$

2. Test the singularity of $\frac{1}{z^2+1}$ & hence find the residues.

Solution:

$$Let f(z) = \frac{1}{z^2 + 1} = \frac{1}{(z + i)(z - i)}$$

$$\therefore z = i \& z = -i \text{ are simple pole}$$

$$(II) => R[z = i] = \lim_{z \to i} (z - i) \frac{1}{(z + i)(z - i)}$$

$$= \lim_{z \to i} \frac{1}{(z + i)} = \frac{1}{2i}$$

$$\therefore R[z = i] = \frac{1}{2i}$$

$$(II) => R[z = -i] = \lim_{z \to -i} (z + i) \frac{1}{(z + i)(z - i)}$$

$$= \lim_{z \to -i} \frac{1}{(z-i)} = -\frac{1}{2i}$$
$$\therefore R[z = -i] = -\frac{1}{2i}$$

Cauchy Residue theorem:

If f(z) is analytic at all points inside & on a simple closed curve C, except at a finite number of poles $z_1, z_2, ..., z_n$ within C, then $\int_C f(z) dz =$

 $2\pi i[sum\ of\ residues\ of\ f(z)at\ z_1,z_2,...,z_n]$

Problems:

1. Evaluate
$$\int_C \frac{4-3z}{z(z-1)(z-2)} dz$$
, $C: |z| = \frac{3}{2}$.

Solution:

Given
$$f(z) = \frac{4 - 3z}{z(z - 1)(z - 2)}$$

$$&|z| = \frac{3}{2} = > x^2 + y^2 = \frac{9}{4}$$

This is a circle with center (0,0)& radius $\frac{3}{2}$

Equating denominator to zero, we get

$$z = 0, z - 1 = 0 & z - 2 = 0$$

$$=> z = 0, z = 1 \& z = 2$$

Here z = 0 is a pole of order 1

$$z = 1$$
 is a pole of order 1

$$z = 2$$
 is a pole of order 1

Also z = 0 & z = 1 are poles which lies inside C & z = 2 is a pole which lie outside C

To find residue at z = 0:

$$R[z = 0] = \lim_{z \to 0} (z - 0) \frac{4 - 3z}{z(z - 1)(z - 2)}$$
$$= \lim_{z \to 0} \frac{4 - 3z}{(z - 1)(z - 2)}$$

$$= \frac{4-0}{(0-1)(0-2)} = 2$$

$$\therefore R[z=0] = 2$$

To find residue at z = 1:

$$R[z = 1] = \lim_{z \to 1} (z - 1) \frac{4 - 3z}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{4 - 3z}{z(z - 2)}$$

$$= \frac{4 - 3}{1(-1)} = -1$$

$$\therefore R[z = 1] = -1$$

: By Cauchy Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i [sum of residues]$$
$$= 2\pi i [2 - 1] = 2\pi i$$

$$\therefore \int_{C} \frac{4-3z}{z(z-1)(z-2)} dz = 2\pi i$$
2. Evaluate
$$\int_{C} \frac{dz}{(z^2+4)^2}, C: |z-i| = 2 \text{ using RT}.$$

Solution:

Given
$$f(z) = \frac{1}{(z^2 + 4)^2}$$

$$\& |z - i| = 2 = > x^2 + (y - 1)^2 = 4$$

This is a circle with center (0,1)& radius 2

Equating denominator to zero, we get

$$z^2 + 4 = 0 = > \boxed{z = \pm 2i}$$

Here $z = \pm 2i$ is a pole of order 2

Also z = 2i is a pole which lie inside C & z = -2i is a pole which lie outside C

To find residue at z = 2i:

$$R[z = 2i] = \frac{1}{1!} \lim_{z \to 2i} \frac{d}{dz} \left[(z - 2i)^2 \frac{1}{(z - 2i)^2 (z + 2i)^2} \right]$$

$$= \lim_{z \to 2i} \frac{d}{dz} \left[\frac{1}{(z + 2i)^2} \right]$$

$$= \lim_{z \to 2i} \left[\frac{-2}{(z + 2i)^3} \right] = -\frac{2}{(4i)^3}$$

$$= -\frac{2}{64i^3} = \frac{1}{32i} \quad (since \ i^2 = -1)$$

$$\therefore R[z = 2i] = \frac{1}{32i}$$

∴ By Cauchy Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i [sum \ of \ residues]$$
$$= 2\pi i \left(\frac{1}{32i}\right) = \frac{\pi}{16}$$

$$\therefore \int_{C} \frac{dz}{(z^2+4)^2} = \frac{\pi}{16}$$

Evaluation of real definite integrals by contour integration:

Type I:

Integrals of the type $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$ where $f(\cos\theta - \sin\theta)$ is a rational function of $\cos\theta$ & $\sin\theta$. In this type of integral, put $z = e^{i\theta}$

then
$$dz = ie^{i\theta}d\theta = > \left[d\theta = \frac{dz}{iz}\right]$$

we know that,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \& \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$= > \left[\cos \theta = \frac{1}{2} \left[z + \frac{1}{z}\right]\right] \& \left[\sin \theta = \frac{1}{2i} \left[z - \frac{1}{z}\right]\right]$$

$$\therefore \int_{0}^{2\pi} f(\cos\theta - \sin\theta)d\theta = \int_{C} f\left(\frac{1}{2}\left[z + \frac{1}{z}\right], \frac{1}{2i}\left[z - \frac{1}{z}\right]\right)\frac{dz}{iz}$$

where C is unit circle |z| = 1

$$= \frac{1}{i} \int_{C} \varphi(z) dz \text{ where } \varphi(z) \text{ is a rational function of } z.$$

Hence by Residue theorem,

$$\int_{C} \varphi(z)dz = 2\pi i [sum of residues of \varphi(z) at it'spoles inside C]$$

Problems:

1. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{5+4\cos\theta}$$

Solution:

Transforming the variable θ in terms of z

Put
$$z = e^{i\theta} = d\theta = \frac{dz}{iz}$$

Also
$$\cos \theta = \frac{1}{2} \left[z + \frac{1}{z} \right] = \frac{1}{2} \left[\frac{z^2 + 1}{z} \right]$$

$$\therefore \int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta} = \int_{C}^{2\pi} \frac{dz/iz}{5 + 4\left[\frac{1}{2}\left[\frac{z^{2} + 1}{z}\right]\right]}$$
where $C: |z| = 1$

$$= \int_{C}^{2\pi} \frac{dz/iz}{\left(\frac{5z + 2z^{2} + 2}{z}\right)}$$

$$= \frac{1}{i} \int_{C}^{2\pi} \frac{dz}{2z^{2} + 5z + 2}$$

$$= \frac{1}{2i} \int_{C}^{2\pi} \frac{dz}{z^{2} + \frac{5}{2}z + 1}$$

$$\therefore \int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta} = \frac{1}{2i} \int_{C} f(z)dz$$

where
$$f(z) = \frac{1}{z^2 + \frac{5}{2}z + 1}$$

To find poles of f(z):

Equating denominator to zero, we get

$$z^{2} + \frac{5}{2}z + 1 = 0$$

$$= > z = \frac{-\frac{5}{2} \pm \sqrt{\frac{25}{4} - 4}}{2} = \frac{-\frac{5}{2} \pm \sqrt{\frac{25 - 16}{4}}}{2}$$

$$= \frac{-\frac{5}{2} \pm \sqrt{\frac{9}{4}}}{2} = \frac{-\frac{5}{2} \pm \frac{3}{2}}{2}$$

$$=\frac{-\frac{5}{2} + \frac{3}{2}}{2}, \frac{-\frac{5}{2} - \frac{3}{2}}{2}$$

$$z = -\frac{1}{2}, -2$$

$$f(z) = \frac{1}{(z+1/2)(z+2)}$$

Here $z = -\frac{1}{2}$ lies inside C(order 1)& z = -2 lies outside C.

To find residue at $z = -\frac{1}{2}$:

$$R[z = -1/2] = \lim_{z \to -1/2} (z + 1/2) \frac{1}{(z + 1/2)(z + 2)}$$
$$= \lim_{z \to -1/2} \frac{1}{(z + 2)} = \frac{1}{\left(-\frac{1}{2} + 2\right)} = \frac{2}{3}$$

$$\left| \therefore R[z = -1/2] = \frac{2}{3} \right|$$

Hence by Residue theorem,

$$\int_{C} f(z)dz = 2\pi i [sum of residues of f(z)]$$

$$= 2\pi i \left[\frac{2}{3}\right]$$

$$f(z)dz = \frac{4}{3}$$

$$\therefore \int_{C} f(z)dz = \frac{4\pi i}{3}$$

$$\therefore \int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta} = \frac{1}{2i} \int_{C} f(z)dz = \frac{1}{2i} \left[\frac{4\pi i}{3} \right] = \frac{2\pi}{3}$$

$$\therefore \int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta} = \frac{2\pi}{3}$$

2. Evaluate
$$\int_C \frac{d\theta}{1-2a\sin\theta+a^2}$$
, $0 < a < 1$

Solution:

Transforming the variable θ in terms of z

$$\operatorname{Put} z = e^{i\theta} \Longrightarrow d\theta = \frac{dz}{iz}$$

$$\operatorname{Also} \sin \theta = \frac{1}{2i} \left[z - \frac{1}{z} \right] = \frac{1}{2i} \left[\frac{z^2 - 1}{z} \right]$$

$$\therefore \int_{C} \frac{d\theta}{1 - 2a \sin \theta + a^2} = \int_{C} \frac{dz/iz}{1 - 2a \left[\frac{1}{2i} \left[\frac{z^2 - 1}{z} \right] \right] + a^2}$$

$$\operatorname{where} C: |z| = 1$$

$$= \int_{C} \frac{dz/iz}{1 - \frac{a}{iz} [z^2 - 1] + a^2}$$

$$= \int_{C} \frac{dz/iz}{(iz - az^2 + a + a^2iz)/iz}$$

$$= \int_{C} \frac{dz}{-az^2 + i(1 + a^2)z + a}$$

$$= -\frac{1}{a} \int_{C} \frac{dz}{z^2 - i\left(\frac{1 + a^2}{a}\right)z - 1}$$

$$\therefore \int \frac{d\theta}{1 - 2a\sin\theta + a^2} = -\frac{1}{a} \int_{C} f(z)dz$$

where
$$f(z) = \frac{1}{z^2 - i\left(\frac{1+a^2}{a}\right)z - 1}$$

To find poles of f(z):

Equating denominator to zero, we get

$$z^{2} - i\left(\frac{1+a^{2}}{a}\right)z - 1 = 0$$

$$z = \frac{i\left(\frac{1+a^{2}}{a}\right) \pm \sqrt{\left(i\left(\frac{1+a^{2}}{a}\right)\right)^{2} - 4(1)(-1)}}{2}$$

$$= \frac{i\left(\frac{1+a^{2}}{a}\right) \pm \sqrt{-\left(\frac{1+a^{2}}{a}\right)^{2} + 4}}{2}$$

$$= \frac{i\left(\frac{1+a^{2}}{a}\right) \pm \sqrt{\frac{-1-a^{4}-2a^{2}+4a^{2}}{a^{2}}}}{2}$$

$$= \frac{i\left(\frac{1+a^2}{a}\right) \pm \sqrt{\frac{-1-a^4+2a^2}{a^2}}}{2}$$

$$= \frac{i\left(\frac{1+a^2}{a}\right) \pm \frac{i}{a}\sqrt{(1-a^2)^2}}{2}$$

$$= \frac{i\left(\frac{1+a^2}{a}\right) \pm i\left(\frac{1-a^2}{a}\right)}{2}$$

$$= > z = \frac{i}{2a}\left[(1+a^2) \pm (1-a^2)\right]$$

$$= > z = \frac{i}{2a}\left[(1+a^2) + (1-a^2)\right],$$

$$z = \frac{i}{2a}\left[(1+a^2) - (1-a^2)\right]$$

$$= > z = \frac{i}{2a}\left[2\right], z = \frac{i}{2a}\left[2a^2\right]$$

$$=>$$
 $z=\frac{i}{a}$, $z=ia$

$$\therefore f(z) = \frac{1}{(z - ia)\left(z - \frac{i}{a}\right)}$$

Here $z = \frac{i}{a}$ lies outside C (since $a < 1 = > \frac{1}{a} > 1$)

& z = ia lies inside C (order 1)(since a < 1)

To find residue at z = ia:

$$R[z = ia] = \lim_{z \to ia} (z - ia) \frac{1}{(z - ia) \left(z - \frac{i}{a}\right)}$$

$$= \lim_{z \to ia} \frac{1}{\left(z - \frac{i}{a}\right)} = \frac{1}{ia - \frac{i}{a}}$$

$$\therefore R[z = ia] = \frac{a}{i(a^2 - 1)}$$

Hence by Residue theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \ of \ f(z) \right]$$

$$= 2\pi i \left[\frac{a}{i(a^{2} - 1)} \right]$$

$$\int_{C} f(z)dz = \frac{2\pi a}{(a^{2} - 1)}$$

$$\therefore \int_{C} \frac{d\theta}{1 - 2a \sin \theta + a^{2}} = -\frac{1}{a} \int_{C} f(z)dz$$

$$= -\frac{1}{a} \left[\frac{2\pi a}{(a^{2} - 1)} \right] = \frac{2\pi}{(1 - a^{2})}$$

$$\therefore \int_{C} \frac{d\theta}{1 - 2a \sin \theta + a^{2}} = \frac{2\pi}{(1 - a^{2})}$$

Type II:

Integrals of the form $\int_{-\infty}^{\infty} \frac{P(x)}{o(x)} dx$

where P(x) & Q(x) are polynomials in xThis integral converges(exists) if, Degree of Q(x) is at least two greater than the degree of P(x) & Q(x) has no real roots.

To evaluate this integral, we consider the integral

$$\int_{C} \frac{P(z)}{Q(z)} dz$$
, where C is the closed contour consisting

of the real axis from -R to R & the semicircle $\Gamma: |z| = R$ in the upper half of the complex plane.

$$\therefore \int_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz \to (1)$$
where $f(z) = \frac{P(z)}{Q(z)}$

All the positive poles will lie inside & negative poles lie outside. Hence by Residue theorem,

$$\int_{C} f(z)dz = 2\pi i [sum \ of \ residues \ of \ f(z)]$$

letting $R \to \infty$, $\int_{\Gamma} f(z)dz = 0$ (by Cauchy's Lemma)

$$\therefore (1) = \int_{C}^{\infty} f(z)dz = \int_{-\infty}^{\infty} f(z)dz$$

Note: Cauchy's Lemma:

If f(z) is a continous function such that $|zf(z)| \to 0$ uniformly as $|z| \to \infty$ on Γ , then $\int_{\Gamma} f(z) dz \to 0$ as $R \to \infty$, where Γ is a semicircle |z| = R above the real axis.

Problems:

1. Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+a^2)(x^2+b^2)}$$

Solution:

Let us consider

$$\int_{C} f(z)dz = \int_{C} \frac{dz}{(z^{2} + a^{2})(z^{2} + b^{2})}$$

where C is the closed contour consisting of the real axis from -R to R & the semicircle Γ : |z|=R in the upper half of the complex plane

$$\therefore \int_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz \to (1)$$

To find $\int_C f(z)dz$:

Consider,
$$f(z) = \frac{1}{(z^2 + a^2)(z^2 + b^2)}$$

To find poles of f(z):

Equating denominator to zero, we get

$$z^{2} + a^{2} = 0 \& z^{2} + b^{2} = 0$$

=> $z^{2} = -a^{2}$, $z^{2} = -b^{2}$
=> $z = \pm ai$, $z = \pm bi$

The poles z = ai & z = bi lies inside C & the poles z = -ai & z = -bi lies outside C

$$\therefore f(z) = \frac{1}{(z+ia)(z-ia)(z+ib)(z-ib)}$$

To find residue at z = ia:

$$R[z = ia] = \lim_{z \to ia} (z - ia) \frac{1}{(z + ia)(z - ia)(z + ib)(z - ib)}$$

$$= \lim_{z \to ia} \frac{1}{(z + ia)(z + ib)(z - ib)}$$

$$= \frac{1}{(ia + ia)(ia + ib)(ia - ib)} = \frac{1}{2ai(-a^2 + b^2)}$$

$$R[z = ia] = \frac{1}{2ai(-a^2 + b^2)}$$

To find residue at z = ib:

$$R[z = ib] = \lim_{z \to ib} (z - ib) \frac{1}{(z + ia)(z - ia)(z + ib)(z - ib)}$$

$$= \lim_{z \to ib} \frac{1}{(z + ia)(z - ia)(z + ib)}$$

$$= \frac{1}{(ib + ia)(ib - ia)(ib + ib)} = \frac{1}{2bi(-b^2 + a^2)}$$

$$R[z = ib] = \frac{1}{2bi(-b^2 + a^2)}$$

Hence by Residue theorem,

$$\int_C f(z)dz = 2\pi i [sum \ of \ residues \ of \ f(z)]$$

$$= 2\pi i \left[\frac{1}{2ai(-a^2 + b^2)} + \frac{1}{2bi(-b^2 + a^2)} \right]$$

$$= \pi \left[\frac{-1}{a(a^2 - b^2)} + \frac{1}{b(a^2 - b^2)} \right]$$

$$= \pi \left[\frac{-b + a}{ab(a^2 - b^2)} \right] = \pi \left[\frac{-b + a}{ab(a + b)(a - b)} \right]$$

$$\therefore \int_{C} f(z)dz = \pi \left[\frac{1}{ab(a + b)} \right]$$

consider

$$(1) = \sum_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz$$
$$= \sum_{R}^{R} f(z)dz + \int_{\Gamma} f(z)dz$$
$$= \sum_{R}^{R} f(z)dz + \int_{\Gamma} f(z)dz$$

letting
$$R \to \infty$$
, $\int_{\Gamma} f(z)dz = 0$ (by Cauchy's Lemma)

$$\therefore \int_{-\infty}^{\infty} f(x)dx = \pi \left[\frac{1}{ab(a+b)} \right]$$

(since on real axis z = x => dz = dx)

$$\left| \therefore \int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \left[\frac{1}{ab(a+b)} \right] \right|$$

2. Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$

Solution:

Let us consider

$$\int_{C} f(z)dz = \int_{C} \frac{z^{2} - z + 2}{z^{4} + 10z^{2} + 9}dz$$

where C is the closed contour consisting of the real axis from

- -R to R & the semicircle $\Gamma: |z|$
- = R in the upper half of the complex plane

$$\therefore \int_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz \to (1)$$

To find $\int_C f(z)dz$:

Consider,
$$f(z) = \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$$

To find poles of f(z):

Equating denominator to zero, we get

$$=> z^{4} + 10z^{2} + 9 = 0$$

$$z^{4} + z^{2} + 9z^{2} + 9 = 0$$

$$z^{2}(z^{2} + 1) + 9(z^{2} + 1) = 0$$

$$(z^{2} + 1)(z^{2} + 9) = 0$$

$$=> z^{2} + 1 = 0 & z^{2} + 9 = 0$$

$$=> z^{2} + 1 = 0, z^{2} + 9 = 0$$

The poles z = i & z = 3i lies inside C & the poles z = -i & z = -3i lies outside C

$$f(z) = \frac{z^2 - z + 2}{(z+i)(z-i)(z+3i)(z-3i)}$$

To find residue at z = i:

$$R[z=i] = \lim_{z \to i} (z-i) \frac{z^2 - z + 2}{(z+i)(z-i)(z+3i)(z-3i)}$$

$$= \lim_{z \to i} \frac{z^2 - z + 2}{(z+i)(z+3i)(z-3i)}$$

$$= \frac{-1-i+2}{(2i)(4i)(-2i)}$$

$$= \frac{1-i}{-16i^3} = \frac{1-i}{16i} \text{ (since } i^3 = -i)$$

$$\therefore R[z=i] = \frac{1-i}{16i}$$

To find residue at z = 3i:

$$R[z = 3i] = \lim_{z \to 3i} (z - 3i) \frac{z^2 - z + 2}{(z + i)(z - i)(z + 3i)(z - 3i)}$$
$$= \lim_{z \to 3i} \frac{z^2 - z + 2}{(z + i)(z - i)(z + 3i)}$$
$$= \frac{-9 - 3i + 2}{(4i)(2i)(6i)}$$

$$= \frac{-7 - 3i}{48i^3} = \frac{-7 - 3i}{-48i} \text{ (since } i^3 = -i\text{)}$$

$$\therefore R[z = 3i] = \frac{7 + 3i}{48i}$$

Hence by Residue theorem,

$$\int_{C} f(z)dz = 2\pi i [sum \ of \ residues \ of \ f(z)]$$

$$= 2\pi i \left[\frac{1-i}{16i} + \frac{7+3i}{48i} \right]$$

$$= 2\pi i \frac{1}{16i} \left[1 - i + \frac{7+3i}{3} \right]$$

$$= \frac{\pi}{8} \left[1 - i + \frac{7}{3} + i \right] = \frac{\pi}{8} \left[\frac{10}{3} \right] = \frac{5}{12} \pi$$

$$\therefore \int_{C} f(z)dz = \frac{5}{12} \pi$$

consider (1) =>
$$\int_C f(z)dz = \int_{-R}^R f(z)dz + \int_{\Gamma} f(z)dz$$

=> $\frac{5}{12}\pi = \int_{-R}^R f(z)dz + \int_{\Gamma} f(z)dz$

letting
$$R \to \infty$$
, $\int_{\Gamma} f(z)dz = 0$

(by Cauchy's Lemma)

$$\therefore \int_{-\infty}^{\infty} f(x)dx = \frac{5}{12}\pi$$

(since on real axis z = x => dz = dx)

$$\left| \therefore \int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = \frac{5}{12} \pi \right|$$

<u>Type III :</u>

Integrals of the form
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos mx \, dx \, (or)$$

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx \, dx \text{ where } P(x) \& Q(x) \text{ are polynomials in } x$$

This integral converges(exists) if, (i)m > 0

(ii) Degree of Q(x) is at least two greater than the degree of P(x) & Q(x) has no real roots.

To evaluate this integral, we consider the integral

$$\int_{C} \frac{P(z)}{Q(z)} RPe^{imz} dz \text{ (or)} \int_{C} \frac{P(z)}{Q(z)} IPe^{imz} dz \text{ where } C \text{ is the closed}$$

contour consisting of the real axis from -R to R & the semicircle Γ : |z|

= R in the upper half of the complex plane.

Then proceed as in Type II

Problem:

Evaluate
$$\int_{-\infty}^{\infty} \frac{\cos mx}{x^2 + a^2} dx$$

Solution:

Let us consider

$$\int_{-\infty}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \int_{-\infty}^{\infty} \frac{RP e^{imx}}{x^2 + a^2} dx = RP \int_{-\infty}^{\infty} \frac{e^{imz}}{z^2 + a^2} dz$$

$$consider \int_{C} f(z) dz = \int_{C} \frac{e^{imz}}{z^2 + a^2} dz$$

where C is the closed contour consisting of the real axis from

- -R to R & the semicircle Γ : |z|
- = R in the upper half of the complex plane

$$\therefore \int_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz \to (1)$$

To find $\int_C f(z)dz$:

Consider,
$$f(z) = \frac{e^{imz}}{z^2 + a^2}$$

To find poles of f(z):

Equating denominator to zero, we get

$$z^{2} + a^{2} = 0 \Rightarrow z = \pm ia$$

$$Here \ z = ia \ lie \ inside \ C$$

$$\& \ z = -ia \ lie \ outside \ C$$

$$e^{imz}$$

$$\therefore f(z) = \frac{e^{imz}}{(z + ia)(z - ia)}$$

To find residue at z = ai:

$$R[z = ai] = \lim_{z \to ai} (z - ai) \frac{e^{imz}}{(z + ia)(z - ia)}$$
$$= \lim_{z \to ai} \frac{e^{imz}}{(z + ia)} = \frac{e^{im(ia)}}{(ia + ia)}$$

$$\left| \therefore R[z = ai] = \frac{e^{-ma}}{2ia} \right|$$

Hence by Residue theorem,

$$\int_{C} f(z)dz = 2\pi i [sum \ of \ residues \ of \ f(z)]$$

$$= 2\pi i \left[\frac{e^{-ma}}{2ia} \right] = \frac{\pi e^{-ma}}{a}$$

$$\therefore \int_{C} f(z)dz = \frac{\pi e^{-ma}}{a}$$

consider

$$(1) = \int_{C} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{\Gamma} f(z)dz$$

$$=>\frac{\pi e^{-ma}}{a}=\int_{-R}^{R}f(z)dz+\int_{\Gamma}f(z)dz$$

letting $R \to \infty$, $\int_{\Gamma} f(z)dz = 0$ (by Cauchy's Lemma)

$$\therefore \int_{-\infty}^{\infty} f(x)dx = RP\left[\frac{\pi e^{-ma}}{a}\right] = \frac{\pi e^{-ma}}{a}$$

(since on real axis z = x => dz = dx)

$$\left| \therefore \int_{-\infty}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi e^{-ma}}{a} \right|$$